Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sleep Breath ; 25(3): 1613-1623, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33200339

RESUMO

PURPOSE: Zao Ren An Shen capsule (ZRASC) which is composed of three kinds of traditional Chinese herbs is a popular Chinese medicine for the treatment of insomnia. This study investigated the hypnotic effect of ZRASC in an anxiety-like mouse model. METHODS: We determined the role of ZRASC in anxiety and co-morbid insomnia using electroencephalogram and electromyogram recordings. Anxiety-like behaviors were tested by using the open-field, light/dark box, or elevated plus-maze in mice. Immunohistochemical techniques were employed to reveal the mechanism by which ZRASC regulated anxiety and insomnia. RESULTS: ZRASC at 680 mg/kg prolonged the time spent in the central area, open arms area, and light box by 1.9, 2.3, and 1.7-fold respectively, compared with the vehicle control group in immobilization stress (IMS) mice. ZRASC at 680 mg/kg given at 08:00 h increased the amount of non-rapid eye movement sleep by 1.4-fold in a 2-h period after dosing in IMS mice. However, it did not alter the sleep-wake behaviors in normal mice. Immunohistochemistry showed that IMS increased c-Fos expression in the neurons of the stria terminalis and tuberomammillary nucleus by 1.8 and 1.6-fold, respectively. In addition, ZRASC (680 mg/kg) reversed the IMS-induced c-Fos expression. CONCLUSIONS: Our results suggest that ZRASC is an effective therapeutic strategy for both anxiety disorder and sleep disturbances in an anxiety-like mouse model.


Assuntos
Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipnóticos e Sedativos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
2.
Anesthesiology ; 130(1): 106-118, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325744

RESUMO

BACKGROUND: The parabrachial nucleus (PBN), which is a brainstem region containing glutamatergic neurons, is a key arousal nucleus. Injuries to the area often prevent patient reanimation. Some studies suggest that brain regions that control arousal and reanimation are a key part of the anesthesia recovery. Therefore, we hypothesize that the PBN may be involved in regulating emergence from anesthesia. METHODS: We investigated the effects of specific activation or inhibition of PBN glutamatergic neurons on sevoflurane general anesthesia using the chemogenetic "designer receptors exclusively activated by designer drugs" approach. Optogenetic methods combined with polysomnographic recordings were used to explore the effects of transient activation of PBN glutamatergic neuron on sevoflurane anesthesia. Immunohistochemical techniques are employed to reveal the mechanism by which PBN regulated sevoflurane anesthesia. RESULTS: Chemogenetic activation of PBN glutamatergic neurons by intraperitoneal injections of clozapine-N-oxide decreased emergence time (mean ± SD, control vs. clozapine-N-oxide, 55 ± 24 vs. 15 ± 9 s, P = 0.0002) caused by sevoflurane inhalation and prolonged induction time (70 ± 15 vs. 109 ± 38 s, n = 9, P = 0.012) as well as the ED50 of sevoflurane (1.48 vs. 1.60%, P = 0.0002), which was characterized by a rightward shift of the loss of righting reflex cumulative curve. In contrast, chemogenetic inhibition of PBN glutamatergic neurons slightly increased emergence time (56 ± 26 vs. 87 ± 26 s, n = 8, P = 0.034). Moreover, instantaneous activation of PBN glutamatergic neurons expressing channelrhodopsin-2 during steady-state general anesthesia with sevoflurane produced electroencephalogram evidence of cortical arousal. Immunohistochemical experiments showed that activation of PBN induced excitation of cortical and subcortical arousal nuclei during sevoflurane anesthesia. CONCLUSIONS: Activation of PBN glutamatergic neurons is helpful to accelerate the transition from general anesthesia to an arousal state, which may provide a new strategy in shortening the recovery time after sevoflurane anesthesia.


Assuntos
Período de Recuperação da Anestesia , Anestésicos Inalatórios/administração & dosagem , Nível de Alerta/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Sevoflurano/administração & dosagem , Animais , Glutamatos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais
3.
Exp Neurol ; 343: 113784, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139240

RESUMO

Arginine vasopressin (AVP) neurons in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) are involved in important physiological behaviors, such as controling osmotic stability and thermoregulation. However, the presynaptic input patterns governing AVP neurons have remained poorly understood due to their heterogeneity, as well as intermingling of AVP neurons with other neurons both in the SON and PVN. In the present study, we employed a retrograde modified rabies-virus system to reveal the brain areas that provide specific inputs to AVP neurons in the SON and PVN. We found that AVP neurons of the SON and PVN received similar input patterns from multiple areas of the brain, particularly massive afferent inputs from the diencephalon and other brain regions of the limbic system; however, PVNAVP neurons received relatively broader and denser inputs compared to SONAVP neurons. Additionally, SONAVP neurons received more projections from the median preoptic nucleus and organum vasculosum of the lamina terminalis (a circumventricular organ), compared to PVNAVP neurons, while PVNAVP neurons received more afferent inputs from the bed nucleus of stria terminalis and dorsomedial nucleus of the hypothalamus, both of which are thermoregulatory nuclei, compared to those of SONAVP neurons. In addition, both SONAVP and PVNAVP neurons received direct afferent projections from the bilateral suprachiasmatic nucleus, which is the master regulator of circadian rhythms and is concomitantly responsible for fluctuations in AVP levels. Taken together, our present results provide a comprehensive understanding of the specific afferent framework of AVP neurons both in the SON and PVN, and lay the foundation for further dissecting the diverse roles of SONAVP and PVNAVP neurons.


Assuntos
Arginina Vasopressina/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Neurônios/química , Núcleo Hipotalâmico Paraventricular/química , Terminações Pré-Sinápticas/química , Núcleo Supraóptico/química
4.
Front Neurosci ; 12: 807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455627

RESUMO

The suprachiasmatic nucleus (SCN) is the principal pacemaker driving the circadian rhythms of physiological behaviors. The SCN consists of distinct neurons expressing neuropeptides, including arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and so on. AVP, VIP, and GRP neurons receive light stimulation from the retina to synchronize endogenous circadian clocks with the solar day, whereas CCK neurons are not directly innervated by retinal ganglion cells and may be involved in the non-photic regulation of the circadian clock. To better understand the function of CCK neurons in non-photic circadian rhythm, it is vital to clarify the direct afferent inputs to CCK neurons in the SCN. Here, we utilized a recently developed rabies virus- and Cre/loxP-based, cell type-specific, retrograde tracing system to map and quantitatively analyze the whole-brain monosynaptic inputs to SCN CCK neurons. We found that SCN CCK neurons received direct inputs from 29 brain nuclei. Among these nuclei, paraventricular nucleus of the hypothalamus (PVH), paraventricular nucleus of the thalamus (PVT), supraoptic nucleus (SON), ventromedial nucleus of the hypothalamus, and seven other nuclei sent numerous inputs to CCK neurons. Moderate inputs originated from the zona incerta, periventricular hypothalamic nucleus, and five other nuclei. A few inputs to CCK neurons originated from the orbital frontal cortex, prelimbic cortex, cingulate cortex, claustrum, and seven other nuclei. In addition, SCN CCK neurons were preferentially innervated by AVP neurons of the ipsilateral PVH and SON rather than their contralateral counterpart, whereas the contralateral PVT sent more projections to CCK neurons than to its ipsilateral counterpart. Taken together, these results expand our knowledge of the specific innervation to mouse SCN CCK neurons and provide an important indication for further investigations on the function of CCK neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA