Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 7088-7096, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436238

RESUMO

Dilanthanide complexes with one-electron delocalization are important targets for understanding the specific 4f/5d-bonding feature in lanthanide chemistry. Here, we report an isolable azide-bridged dicerium complex 3 [{(TrapenTMS)Ce}2(µ-N3)]• [Trapen = tris (2-aminobenzyl)amine; TMS = SiMe3], which is synthesized by the reaction of tripodal ligand-supported (TrapenTMS)CeIVCl complex 2 with NaN3. The structure and bonding nature of 3 are fully characterized by X-ray crystal diffraction analysis, electron paramagnetic resonance (EPR), magnetic measurement, cyclic voltammetry, X-ray absorption spectroscopy, and quantum-theoretical studies. Complex 3 presents a trans-bent central Ce-N3-Ce unit with a single electron of two mixed-valent Ce atoms. The unique low-temperature (2 K) anisotropic EPR signals [g = 1.135, 2.003, and 3.034] of 3 indicate that its spin density is distributed on the central Ce-N3-Ce unit with marked electron delocalization. Quantum chemical analyses show strong 4f/5d orbital mixing in the singly occupied molecular orbital of 3, which allows for the unpaired electron to extend throughout the cerium-azide-cerium unit via a multicentered one-electron (Ce-N3-Ce) interaction. This work extends the family of mixed-valent dilanthanide complexes and provides a paradigm for understanding the bonding motif of ligand-bridged dilanthanide complexes.

2.
Biol Reprod ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582608

RESUMO

The aim of this study was to evaluate the role of angiotensin-converting enzyme 1 (ACE1) in H2O2-induced trophoblast cell injury and the potential molecular mechanisms. Oxidative stress was modeled by exposing HTR-8/SVneo cells to 200 µM H2O2. Western blot and real-time quantitative PCR methods were used to detect protein and mRNA expression level of ACE1 in chorionic villus tissue and trophoblast HTR-8/SVneo cell. Inhibition of ACE1 expression was achieved by transfection with small interfering RNA. Then flow cytometry, Cell Counting Kit-8, and Transwell assay was used to assess apoptosis, viability, and migration ability of the cells. Reactive oxygen species (ROS) were detected by fluorescent probes, and malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) activities were determined by corresponding detection kits. Angiotensin-converting enzyme 1 expression was upregulated in chorionic villus tissue of patients with missed abortion (MA) compared with individuals with normal early pregnancy abortion. H2O2 induced elevated ACE1 expression in HTR-8/SVneo cells, promoted apoptosis, and inhibited cell viability and migration. Knockdown of ACE1 expression inhibited H2O2-induced effects to enhance cell viability and migration and suppress apoptosis. Additionally, H2O2 stimulation caused increased levels of ROS and MDA and decreased SOD and GSH activity in the cells, whereas knockdown of ACE1 expression led to opposite changes of these oxidative stress indicators. Moreover, knockdown of ACE1 attenuated the inhibitory effect of H2O2 on the Nrf2/HO-1 pathway. Angiotensin-converting enzyme 1 was associated with MA, and it promoted H2O2-induced injury of trophoblast cells through inhibiting the Nrf2 pathway. Therefore, ACE1 may serve as a potential therapeutic target for MA.

3.
Inorg Chem ; 63(11): 5281-5293, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38430109

RESUMO

The attributes of good solubility and the redox-neutral nature of molten salt fluxes enable them to be useful for the synthesis of novel crystalline actinide compounds. In this work, a flux growth method under an inert atmosphere is proposed to explore the valence diversity of uranium, and a series of five uranium silicate structures, [K3Cl][(UVIO2)(Si4O10)] (1), Cs3[(UVO2)(Si4O10)] (2), K2[UIV(Si2O7)] (3), K8[(UVIO2)(UVO2)2(Si8O22)] (4), and Cs6[UIV(UVO)2(Si12O32)] (5), were synthesized using different metal halide salt and feeding U/Si ratios. Crystal structure analysis reveals that the utilization of argon atmosphere that helps to avoid possible oxidation of low-valence uranium generates a variety of oxidation states of uranium including U(VI), U(V), U(IV), mixed-valence U(V) and U(VI), and mixed-valence U(IV) and U(V). Characterization of physicochemical properties of representative compounds shows that all these uranium silicate compounds have bandgaps among the range of 2.0-3.4 eV, and mixed-valence uranium silicate compounds have relatively narrower bandgaps. Density functional theory calculations on formation enthalpies, lattice energies, and bandgaps of all five compounds were also performed to provide more structural information about these uranium silicates. This work enriches the library of variable-valence uranium silicate compounds and provides a feasible way to produce novel actinide compounds with intriguing properties through the flux growth method that might show potential application in relevant fields such as storage media for nuclear waste.

4.
Inorg Chem ; 63(1): 462-473, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38141022

RESUMO

Adding hydrophilic ligands into aqueous solutions for the selective binding of actinides(III) is acknowledged as an advanced strategy in Ln(III)/An(III) separation. In view of the recycling and radioactive waste disposal of the minor actinide, there remains an urgent need to design and develop the appropriate ligand for selective separation of An(III) from Ln(III). Herein, four novel hydrophilic ligands with hard-soft hybrid donors, derived from the pyridine and phenanthroline skeletons, were designed and synthesized as masking agents for selective complexation of An(III) in the aqueous phase. The known N,N,N',N'-tetraoctyl diglycolamide (TODGA) was used as lipophilic extractant in the organic phase for extraction of Ln(III), and a new strategy for the competitive extraction of An(III) and Ln(III) was developed based on TODGA and the above hydrophilic ligands. The optimal hydrophilic ligand of N,N'-bis(2-hydroxyethyl)-2,9-dicarboxamide-1,10-phenanthroline (2OH-DAPhen) displayed exceptional selectivity toward Am(III) over Ln(III), with the concentrations of HNO3 ranging from 0.05 to 3.0 M. The maximum separation factors were up to 1365 for Eu/Am, 417.66 for Eu/Cm, and 42.38 for La/Am. The coordination mode and bonding property of 2OH-DAPhen with Ln(III) were investigated by 1H NMR titration, UV-vis spectrophotometric titration, luminescence titration, FT-IR, ESI-HRMS analysis, and DFT calculations. The results revealed that the predominant species formed in the aqueous phase was a 1:1 ligand/metal complex. DFT calculations also confirmed that the affinity of 2OH-DAPhen for Am(III) was better than that for Eu(III). The present work using a competitive extraction strategy developed a feasible alternative method for the selective separation of trivalent actinides from lanthanides.

5.
Inorg Chem ; 63(8): 3859-3869, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335061

RESUMO

During the PUREX process, the separation between U(VI) and Pu(IV) is achieved by reducing Pu(IV) to Pu(III), which is complicated and energy-consuming. To address this issue, we report here the first case of separation of U(VI) from Pu(IV) by o-phenanthroline diamide ligands under high acidity. Two new o-phenanthroline diamide ligands (1,10-phenanthroline-2,9-diyl)bis(indolin-1-ylmethanone) (L1) and (1,10-phenanthroline-2,9-diyl)bis((2-methylindolin-1-yl)methanone) (L2) were synthesized, which can effectively separate U(VI) from Pu(IV) even at 4 mol/L HNO3. The highest separation factor of U(VI) and Pu(IV) can reach over 1000, setting a new record for the separation of U(VI) from Pu(IV) under high acidity. Furthermore, extracted U(VI) can be easily recovered with water or dilute nitric acid, and the extraction performance remains stable even after 150 kGy gamma irradiation, which provides solid experimental support for potential engineering applications. The results of UV-vis titration and single-crystal X-ray diffraction measurements show that the 1:1 complex formed by L1 with U(VI) is more stable than all of the previously reported phenanthroline ligands, which reasonably reveals that the ligand L1 designed in this work has excellent affinity for U(VI). The findings of this work promise to contribute to the facilitation of the PUREX process by avoiding the use of reducing agents. It also provides new clues for designing ligands to achieve efficient separation between U(VI) and Pu(IV) at high acidity.

6.
Phys Chem Chem Phys ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910568

RESUMO

This study introduces a new wide-bandgap graphene-like structure, denoted as C6BN, achieved by incorporating an eight-electron BN pair, substantially modifying its electronic properties. Utilizing extensive density functional calculations, we comprehensively analyzed the stability, electronic structure, mechanical properties, and optical-electrical characteristics of C6BN. Our investigations reveal the material's exceptional thermodynamic, mechanical, and dynamic stability. Notably, the calculated wide bandgap of 2.81 eV in C6BN, supported by analyses of energy levels, band structures, and density of states, positions it as a promising two-dimensional wide-bandgap semiconductor. Additionally, C6BN exhibits isotropic mechanical features, highlighting its inherent flexibility. Remarkably, our calculations indicate an ultra-low dielectric constant (k = 1.67) for C6BN, surpassing that of well-established third-generation semiconductors. Further exploration into the thermoelectric properties of C6BN demonstrates its promising performance, as evidenced by calculations of thermal conductivity (κ), power factor (P), and Seebeck coefficient (S). In summary, our findings underscore the significant potential of the proposed C6BN structure as a flexible two-dimensional material poised to drive future advancements in electronic and energy-related technologies.

7.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526106

RESUMO

This study focuses on the recognition and isolation of fullerenes, which are crucial for further exploration of their physical and chemical properties. Our goal is to investigate the potential recognition of the D5h-C70 fullerene using crown-shaped metal compositions through density functional theory calculations. We assess the effectiveness of fullerene C70 recognition by studying the binding energy. Additionally, various analyses were conducted, including natural bond order charge analysis and reduced density gradient analysis, to understand the interaction mechanism between the host and guest molecules. These investigations provide valuable insights into the nature of the interaction and the stability of the host-guest system. To facilitate the release of the fullerene guest molecule, the vis-NIR spectra were simulated for the host-guest structures. This analysis offers guidance on the specific wavelengths that can be utilized to release the fullerene guest from the host-guest structures. Overall, this work proposes a new strategy for the effective recognition of various fullerene molecules and their subsequent release from host-guest systems. These findings could potentially be applied in assemblies involving fullerenes, advancing their practical applications.

8.
Pediatr Hematol Oncol ; 41(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37452625

RESUMO

Severe sepsis and septic shock are life-threatening for pediatric hematology and oncology patient receiving chemotherapy. Th1/Th2 cytokines, C-reactive protein (CRP), and procalcitonin (PCT) are all thought to be associated with disease severity. The aim of this study was to prospectively verify the utility of Th1/Th2 cytokines and compare them with PCT and CRP in the prediction of adverse outcomes. Data on patients were collected from January 1, 2011, to December 31, 2020. Blood samples were taken for Th1/Th2 cytokine, CRP, and PCT measurements at the initial onset of infection. Severe infection (SI) was defined as severe sepsis or septic shock. Th1/Th2 cytokine levels were determined by using flow cytometric bead array technology. In total, 7,735 febrile episodes were included in this study. For SI prediction, the AUCs of IL-6, IL-10 and TNF-α were 0.814, 0.805 and 0.624, respectively, while IL-6 and IL-10 had high sensitivity and specificity. IL-6 > 220.85 pg/ml and IL-10 > 29.95 pg/ml had high odds ratio (OR) values of approximately 3.5 in the logistic regression. Within the subgroup analysis, for bloodstream infection (BSI) prediction, the AUCs of IL-10 and TNF-α were 0.757 and 0.694, respectively. For multiorgan dysfunction syndrome (MODS) prediction, the AUC of CRP was 0.606. The AUC of PCT for mortality prediction was 0.620. In conclusion, IL-6 and IL-10 provide good predictive value for the diagnosis of SI. For children with SI, IL-10 and TNF-α are associated with BSI, while CRP and PCT are associated with MODS and death, respectively.


Assuntos
Hematologia , Neoplasias , Sepse , Choque Séptico , Criança , Humanos , Pró-Calcitonina , Citocinas , Proteína C-Reativa , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Biomarcadores
9.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína-Arginina N-Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia , Arginina
10.
J Am Chem Soc ; 145(32): 18148-18159, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531566

RESUMO

Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 µmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.

11.
Chemistry ; 29(54): e202301929, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37429820

RESUMO

Moisture harvesters with favourable attributes such as easy synthetic availability and good processability as alternatives for atmospheric moisture harvesting (AWH) are desirable. This study reports a novel nonporous anionic coordination polymer (CP) of uranyl squarate with methyl viologen (MV2+ ) as charge balancing ions (named U-Squ-CP) which displays intriguing sequential water sorption/desorption behavior as the relative humidity (RH) changes gradually. The evaluation of AWH performance of U-Squ-CP shows that it can absorb water vapor under air atmosphere at a low RH of 20 % typical of the levels found in most dry regions of the world, and have good cycling durability, thus demonstrating the capability as a potential moisture harvester for AWH. To the authors' knowledge, this is the first report on non-porous organic ligand bridged CP materials for AWH. Moreover, a stepwise water-filling mechanism for the water sorption/desorption process is deciphered by comprehensive characterizations combining single-crystal diffraction, which provides a reasonable explanation for the special moisture harvesting behaviour of this non-porous crystalline material.

12.
BMC Cancer ; 23(1): 840, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679666

RESUMO

Head neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors which ranks the sixth incidence in the world. Although treatments for HNSCC have improved significantly in recent years, its recurrence rate and mortality rate remain high. Myosin genes have been studied in a variety of tumors, however its role in HNSCC has not been elucidated. GSE58911 and GSE30784 gene expression profile analysis were performed to detect significantly dys-regulated myosin genes in HNSCC. The Cancer Genome Atlas (TCGA) HNSCC database was used to verify the dys-regulated myosin genes and study the relationship between these genes and prognosis in HNSCC. The results showed that MYL1, MYL2, MYL3, MYH2, and MYH7 were down-regulated, while MYH10 was up-regulated in patients with HNSCC. Interestingly, MYL1, MYL2, MYH1, MYH2, and MYH7 were shown to be unfavorable prognostic markers in HNSCC. It is also worth noting that MYL1 was a specific unfavorable prognostic biomarker in HNSCC. MYL1, MYL2, MYL3, MYH2, MYH7, and MYH10 promoted CD4 + T cells activation in HNSCC. MYL1 was proved to be down-regulated in HNSCC tissues compared to normal tissues at protein levels. MYL1 overexpression had no effect on proliferation, but significantly promoted migration of Fadu cells. MYL1 increased EGF and EGFR protein expression levels. Moreover, there is a positive correlation between MYL1 expression and Tcm CD8 cells, Tcm CD4 + cells, NK cells, Mast cells, NKT cells, Tfh cells and Treg cells in HNSCC. Overall, MYL1 facilitates tumor metastasis and correlates with tumor immune infiltration in HNSCC and these effects may be associated with the EGF/EGFR pathway.


Assuntos
Neoplasias de Cabeça e Pescoço , Segunda Neoplasia Primária , Humanos , Biomarcadores , Fator de Crescimento Epidérmico , Receptores ErbB , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
13.
Inorg Chem ; 62(3): 1086-1094, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622819

RESUMO

The development of efficient, stable, and visible-light-responsive photocatalysts is crucial to address the pollution of water bodies by toxic heavy metal ions and organic antibiotics. Herein, a series of LaNi1-xFexO3/g-C3N4 heterojunction photocatalysts are prepared by a simple wet chemical method. Moreover, LaNi0.8Fe0.2O3/g-C3N4 composites are characterized by various methods, including structure, morphology, optical, and electrochemical methods and tetracycline degradation and photocatalytic reduction of Cr(VI) under visible light irradiation. Then, the photocatalytic performance of as-prepared LaNi0.8Fe0.2O3/g-C3N4 composites is evaluated. Compared with pure LaNi0.8Fe0.2O3 and g-C3N4, the LaNi0.8Fe0.2O3/g-C3N4 composite photocatalysts exhibit excellent photocatalytic performance due to synergy of doping and constructing heterojunctions. The results show that the doping of Fe ions can increase the concentration of oxygen vacancies, which is ultimately beneficial to the formation of electron traps. Moreover, the type-II heterojunction formed between LaNi0.8Fe0.2O3 and g-C3N4 effectively strengthens the separation and transfer of photoinduced carriers, thereby promoting photocatalytic activity. Furthermore, the photocatalytic activity of the LaNi0.8Fe0.2O3/g-C3N4 photocatalyst remains almost unchanged after three cycles, indicating long-term stability. Ultimately, the photocatalytic mechanism of the LaNi0.8Fe0.2O3/g-C3N4 composites is proposed.


Assuntos
Antibacterianos , Tetraciclina , Catálise , Luz
14.
Inorg Chem ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055977

RESUMO

Excellent "CHON" compatible ligands based on a heterocyclic skeleton for the separation of trivalent actinides [An(III)] from lanthanides [Ln(III)] have been widely explored, the aim being spent nuclear fuel reprocessing. The combination mode of a soft/hard (N/O) donor upon the coordination chemistry of An(III) and Ln(III) should play a vital role with respect to the performance of ligands. As such, in this work, two typical experimentally available phenanthroline-derived tetradentate ligands, CyMe4-BTPhen (L1) and Et-Tol-DAPhen (L4), and two theoretically designed asymmetric tetradentate heterocyclic ligands, L2 and L3, with various N/O donors were investigated using scalar relativistic density functional theory. We have evaluated the electronic structures of L1-L4 and their coordination modes, bonding properties, and extraction reactions with Am(III) and Eu(III). We found that the Am/Eu-N interactions play a more important role in the orbital interactions between the ligand and Am(III)/Eu(III) ions. Compared with those of L1, the coordinated O atoms of L2 and L4 weaken the metal-N bonds. The Am(III)/Eu(III) selectivity follows the order L1 > L2 > L4 based on the change in Gibbs free energy, reflecting the fact that the Am(III)/Eu(III) selectivity of the ligand is affected by the number of coordinated N atoms. In addition, L3 displays the strongest binding ability for Am(III)/Eu(III) ions and the smallest Am(III)/Eu(III) selectivity among the four ligands, due to its structural preorganization. This work clarifies the influence of the number of coordinated N and O atoms of ligands on Am(III)/Eu(III) selectivity, which provides valuable fundamental information for the design of efficient ligands with N and O donors for An(III)/Ln(III) separation.

15.
Inorg Chem ; 62(6): 2705-2714, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724403

RESUMO

Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) poses a huge challenge in the reprocessing of spent nuclear fuel due to their similar chemical properties. N,N'-Diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) is a potential ligand for the extraction of An(III) from Ln(III), while there are still few reports on the effect of its substituent including electron-withdrawing and electron-donating groups on An(III)/Ln(III) separation. Herein, the interaction of Et-Tol-DAPhen ligands modified by the electron-withdrawing groups (CF3, Br) and electron-donating groups (OH) with Am(III)/Eu(III) ions was investigated using scalar relativistic density functional theory (DFT). The analyses of bond order, quantum theory of atoms in molecules (QTAIM), and molecular orbital (MO) indicate that the substitution groups have a slight effect on the electronic structures of the [M(L-X)(NO3)3] (X = CF3, Br, OH) complexes. However, the thermodynamic results suggest that a ligand with the electron-donating group (L-OH) improves the extraction ability of metal ions, and the ligand modified by the electron-withdrawing group (L-Br) has the best Am(III)/Eu(III) selectivity. This work could render new insights into understanding the effect of electron-withdrawing and electron-donating groups in tuning the selectivity of Et-Tol-DAPhen derivatives and pave the way for designing new ligands modified by substituted groups with better extraction ability and An(III)/Ln(III) selectivity.

16.
Inorg Chem ; 62(21): 8179-8187, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37192470

RESUMO

Separation of minor actinides from lanthanides is one of the biggest challenges in spent fuel reprocessing due to the similar physicochemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)). Therefore, developing ligands with excellent extraction and separation performance is essential at present. As an excellent pre-organization platform, calixarene has received more attention on Ln(III)/An(III) separation. In this work, we systematically explored the complexation behaviors of the diglycolamide (DGA)/dimethylacetamide (DMA)-functionalized calix[4]arene extractants for Eu(III) and Am(III) using relativistic density functional theory (DFT). These calix[4]arene-derived ligands were obtained by functionalization with two or four binding units at the narrow edge of the calix[4]arene platform. All bonding nature analyses suggested that the Eu-L complexes possess stronger interaction compared to Am-L analogues, resulting in the higher extraction capacity of the these calix[4]arene ligands toward Eu(III). Thermodynamic analysis demonstrates that these pre-organized ligands on the calix[4]arene platform with four binding units yield better extraction abilities than the single ligands. Although DMA-functionalized ligands show stronger complexation stability for metal ions, in acidic solutions, the calix[4]arene ligands with DGA binding units have better extraction performance for Eu(III) and Am(III) due to the basicity of the DMA ligand. This work enabled us to gain a deeper understanding of the bonding properties between supramolecular ligands and lanthanides/actinides and afford useful insights into designing efficient supramolecular ligands for separating Ln(III)/An(III).

17.
Inorg Chem ; 62(11): 4581-4589, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935646

RESUMO

The separation of lanthanides and actinides has attracted great attention in spent nuclear fuel reprocessing up to date. In addition, liquid-liquid extraction is a feasible and useful way to separate An(III) from Ln(III) based on their relative solubilities in two different immiscible liquids. The hydrophilic bipyridine- and phenanthroline-based nitrogen-chelating ligands show excellent performance in separation of Am(III) and Eu(III) as reported previously. To profoundly explore the separation mechanism, herein, we first of all designed four hydrophilic sulfonated and phosphorylated ligands L1, L2, L3, and L4 based on the bipyridine and phenanthroline backbones. In addition, we studied the structures of these ligands and their neutral complexes [ML(NO3)3] (M = Am, Eu) as well as the thermodynamic properties of complexing reactions through the scalar relativistic density functional theory. According to the changes of the Gibbs free energy for the back-extraction reactions, the phenanthroline-based ligands L2 and L4 have stronger complexing capacity for both Am(III) and Eu(III) ions while the phosphorylated ligand L3 with the bipyridine framework has the highest Am(III)/Eu(III) selectivity. In addition, the charge decomposition analysis revealed a higher degree of charge transfer from the ligand to Am(III), suggesting stronger donor-acceptor interactions in the Am(III) complexes. This study can provide theoretical insights into the separation of actinide(III)/lanthanide(III) using hydrophilic sulfonated and phosphorylated N-donor ligands.

18.
Inorg Chem ; 62(38): 15346-15351, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37682658

RESUMO

Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.

19.
J Phys Chem A ; 127(19): 4259-4268, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37143344

RESUMO

An efficient approach to Np separation in the Plutonium Uranium Reduction EXtraction (PUREX) process is to adjust Np(VI) to Np(V) by free-salt reductants, such as hydrazine and its derivatives. Recently, carbohydrazide (CO(N2H3)2), a derivative of hydrazine and urea, has received much attention, which can reduce Np(VI) to Np(V) in the extraction reprocessing of spent nuclear fuel. Herein, according to the experimental observations, we examine the reduction mechanism of four Np(VI) by one carbohydrazide molecule using multiple theoretical calculations. The fourth Np(VI) reduction with a 22.26 kcal mol-1 energy barrier is the rate-determining step, which is in accordance with the experimental observations (20.54 ± 1.20 kcal mol-1). The results of spin density reflect that the reduction of the first and third Np(VI) ion is an outer-sphere electron transfer, while that of the second and fourth Np(VI) ion is the hydrogen transfer. Localized molecular orbitals (LMOs) uncover that the breaking of the N-H bond and formation of the Oyl-H bond are accompanied by the reaction from initial complexes (ICs) to intermediates (INTs). This work offers basic perspectives for the reduction mechanism of Np(VI) to Np(V) by CO(N2H3)2, which is also expected to design excellent free-salt Np(VI) reductants for the separation of Np in the advanced PUREX process.

20.
J Phys Chem A ; 127(36): 7479-7486, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37668451

RESUMO

The separation of plutonium (Pu) from spent nuclear fuel was achieved by effectively adjusting the oxidation state of Pu from +IV to +III in the plutonium uranium reduction extraction (PUREX) process. Acetaldoxime (CH3CHNOH) as a free salt reductant can rapidly reduce Pu(IV), but the reduction mechanism remains indistinct. Herein, we explore the reduction mechanism of two Pu(IV) ions by one CH3CHNOH molecule, where the second Pu(IV) reduction is the rate-determining step with the energy barrier of 19.24 kcal mol-1, which is in line with the experimental activation energy (20.95 ± 2.34 kcal mol-1). Additionally, the results of structure and spin density analyses demonstrate that the first and second Pu(IV) reduction is attributed to hydrogen atom transfer and hydroxyl ligand transfer, respectively. Analysis of localized molecular orbitals unveils that the reduction process is accompanied by the breaking of the Pu-OOH bond and the formation of the OOH-H and C-OOH bonds. The reaction energies confirm that the reduction of Pu(IV) by acetaldoxime is both thermodynamically and kinetically accessible. In this work, we elucidate the reduction mechanism of Pu(IV) with CH3CHNOH, which provides a theoretical understanding of the rapid reduction of Pu(IV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA