RESUMO
DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.
Assuntos
Autofagia , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , DNA Topoisomerases Tipo I , Lisossomos , Proteínas de Membrana , Animais , Humanos , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Instabilidade Genômica , Lisossomos/metabolismo , Proteína Homóloga a MRE11/metabolismo , Inibidores da Topoisomerase I/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Oncogene amplification on extrachromosomal DNA (ecDNA) drives the evolution of tumours and their resistance to treatment, and is associated with poor outcomes for patients with cancer1-6. At present, it is unclear whether ecDNA is a later manifestation of genomic instability, or whether it can be an early event in the transition from dysplasia to cancer. Here, to better understand the development of ecDNA, we analysed whole-genome sequencing (WGS) data from patients with oesophageal adenocarcinoma (EAC) or Barrett's oesophagus. These data included 206 biopsies in Barrett's oesophagus surveillance and EAC cohorts from Cambridge University. We also analysed WGS and histology data from biopsies that were collected across multiple regions at 2 time points from 80 patients in a case-control study at the Fred Hutchinson Cancer Center. In the Cambridge cohorts, the frequency of ecDNA increased between Barrett's-oesophagus-associated early-stage (24%) and late-stage (43%) EAC, suggesting that ecDNA is formed during cancer progression. In the cohort from the Fred Hutchinson Cancer Center, 33% of patients who developed EAC had at least one oesophageal biopsy with ecDNA before or at the diagnosis of EAC. In biopsies that were collected before cancer diagnosis, higher levels of ecDNA were present in samples from patients who later developed EAC than in samples from those who did not. We found that ecDNAs contained diverse collections of oncogenes and immunomodulatory genes. Furthermore, ecDNAs showed increases in copy number and structural complexity at more advanced stages of disease. Our findings show that ecDNA can develop early in the transition from high-grade dysplasia to cancer, and that ecDNAs progressively form and evolve under positive selection.
Assuntos
Adenocarcinoma , Esôfago de Barrett , Carcinogênese , DNA , Progressão da Doença , Detecção Precoce de Câncer , Neoplasias Esofágicas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Estudos de Casos e Controles , DNA/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinogênese/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Biópsia , Oncogenes , Imunomodulação , Variações do Número de Cópias de DNA , Amplificação de Genes , Detecção Precoce de Câncer/métodosRESUMO
Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.
Assuntos
Apigenina , Glucuronatos , Sistema de Sinalização das MAP Quinases , Macrófagos , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Glucuronatos/farmacologia , Glucuronatos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Inflamação/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismoRESUMO
OBJECTIVE: Whether gastric metaplasia (GM) of the oesophagus should be considered as Barrett's oesophagus (BO) is controversial. Given concern intestinal metaplasia (IM) may be missed due to sampling, the UK guidelines include GM as a type of BO. Here, we investigated whether the risk of misdiagnosis and the malignant potential of GM warrant its place in the UK surveillance. DESIGN: We performed a thorough pathology and endoscopy review to follow clinical outcomes in a novel UK cohort of 244 patients, covering 1854 person years of follow-up. We complemented this with a comparative genomic analysis of 160 GM and IM specimens, focused on early molecular hallmarks of BO and oesophageal adenocarcinoma (OAC). RESULTS: We found that 58 of 77 short-segment (<3 cm) GM (SS-GM) cases (75%) continued to be observed as GM-only across a median of 4.4 years of follow-up. We observed that disease progression in GM-only cases and GM+IM cases (cases with reported GM on some occasions, IM on others) was significantly lower than in the IM-only cases (Kaplan-Meier, p=0.03). Genomic analysis revealed that the mutation burden in GM is significantly lower than in IM (p<0.01). Moreover, GM does not bear the mutational hallmarks of OAC, with an absence of associated signatures and driver gene mutations. Finally, we established that GM found adjacent to OAC is evolutionarily distant from cancer. CONCLUSION: SS-GM is a distinct entity from SS-IM and the malignant potential of GM is lower than IM. It is questionable whether SS-GM warrants inclusion in BO surveillance.
Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Esôfago de Barrett/complicações , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Metaplasia , Endoscopia GastrointestinalRESUMO
Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide. Classically, HCC develops in genetically susceptible individuals who are exposed to risk factors, especially in the presence of liver cirrhosis. Significant temporal and geographic variations exist for HCC and its etiologies. Over time, the burden of HCC has shifted from the low-moderate to the high sociodemographic index regions, reflecting the transition from viral to nonviral causes. Geographically, the hepatitis viruses predominate as the causes of HCC in Asia and Africa. Although there are genetic conditions that confer increased risk for HCC, these diagnoses are rarely recognized outside North America and Europe. In this review, we will evaluate the epidemiologic trends and risk factors of HCC, and discuss the genetics of HCC, including monogenic diseases, single-nucleotide polymorphisms, gut microbiome, and somatic mutations.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Cirrose Hepática/epidemiologia , Cirrose Hepática/genética , Cirrose Hepática/complicações , Fatores de Risco , América do Norte/epidemiologiaRESUMO
AIMS: To explore the relationship between preconception severe hypoglycemia (PSH) and pregnancy outcomes in pregnancies complicated with type 1 diabetes mellitus (T1DM). MATERIALS AND METHODS: In this multicenter prospective cohort study, women with pregestational T1DM were stratified by episodes of severe hypoglycemia within 1 year before conception: No PSH, sporadic PSH (1-6 times/year), and recurrent PSH (>6 times/year). We analysed the predictive ability of PSH for maternal and neonatal outcomes using log-binomial regression models and receiver operating characteristic (ROC) curve. RESULTS: Of the 124 women studied, 37.1% experienced at least one episode of severe hypoglycemia preconception. In the multiple adjusted regression models, recurrent PSH was significantly associated with increased incidence of preeclampsia (RR 17.59, 95% CI: 2.89-150.62, p for trend = 0.007), preterm birth (RR 6.34, 95% CI: 1.22-40.63, p for trend = 0.027), neonatal hypoglycemia (RR 4.52, 95% CI: 1.14-17.16, p for trend = 0.017), neonatal hyperbilirubinemia (RR 4.12, 95% CI: 1.11-15.56, p for trend = 0.004), and composite neonatal outcome (RR 3.85, 95% CI: 1.01-19.61, p for trend = 0.003). In the ROC analysis, PSH predicted preeclampsia, preterm birth, neonatal hypoglycemia, neonatal hyperbilirubinemia, and composite neonatal outcome with areas under the ROC curve all ≥0.6. CONCLUSIONS: Recurrent preconception severe hypoglycemia is associated with increased risks of adverse outcomes in pregnant women with T1DM.
Assuntos
Diabetes Mellitus Tipo 1 , Hiperbilirrubinemia Neonatal , Hipoglicemia , Pré-Eclâmpsia , Gravidez em Diabéticas , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Resultado da Gravidez , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Gestantes , Nascimento Prematuro/epidemiologia , Estudos Prospectivos , Gravidez em Diabéticas/epidemiologia , Hipoglicemia/epidemiologia , Hipoglicemia/etiologia , Hiperbilirrubinemia Neonatal/complicaçõesRESUMO
Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.
Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Apoptose , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Piridinas/farmacologiaRESUMO
Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 µmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.
RESUMO
PURPOSE: Preexisting type 1 diabetes is a stressful situation for women in pregnancy. We aimed to evaluate health-related quality of life (HRQoL) during pregnancy in women with type 1 diabetes and examine the association between HRQoL and pregnancy outcomes. METHODS: This multicenter prospective cohort study involved 115 pregnant women with type 1 diabetes from 11 participating centers in China. HRQoL was investigated in three trimesters using European Quality-of-life 5-Dimension 5-Level questionnaire (EQ-5D-5 L). Chinese time trade-off value method was used to calculate the EQ-5D-5 L score. Multivariable logistic regression model was used to evaluate the effect of HRQoL on maternal and neonatal outcomes. Receiver operating characteristic curves and distribution-based methods were employed to estimate minimally important differences of clinically important decline in HRQoL. RESULTS: 50.43% of the studied women with type 1 diabetes reported impaired HRQoL in pregnancy. Estimated maternal HRQoL significantly decreased from early to mid-pregnancy (mean EQ-5D-5 L score 0.97 in the first trimester and 0.91 in the second trimester) and improved slightly in late pregnancy (mean EQ-5D-5 L score 0.95). Multivariable regression model showed that women who experienced impaired HRQoL in pregnancy had higher risk of hypertensive disorder, preterm birth, and composite pregnancy outcome. The estimated minimally important difference for composite pregnancy outcome was -0.045 to -0.043. CONCLUSIONS: Experiencing impaired HRQoL during pregnancy was associated with a higher risk of hypertensive disorder and preterm birth in women with type 1 diabetes. The estimated minimally important difference of EQ-5D-5 L might serve as a clinically important tool in prenatal care. TRIAL REGISTRATION: No.ChiCTR1900025955.
Assuntos
Diabetes Mellitus Tipo 1 , Qualidade de Vida , Humanos , Feminino , Gravidez , Diabetes Mellitus Tipo 1/psicologia , Adulto , Estudos Prospectivos , China , Inquéritos e Questionários , Resultado da Gravidez , Recém-Nascido , Gravidez em Diabéticas/psicologia , Adulto Jovem , Complicações na Gravidez/psicologiaRESUMO
Qiling Baitouweng Tang (QLBTWT) is a traditional clinical formula for treating diffuse large B-cell lymphoma (DLBCL), but its molecular action is not fully understood. This research is utilized in silico analysis and liquid chromatography tandem mass spectrometry (LCâMS/MS) to identify the active constituents of QLBTWT with anti-DLBCL properties and their targets. The study identified 14 compounds, including quercetin, naringenin, and astilbin, as potentially effective against DLBCL. Molecular modeling highlighted the favorable interaction of quercetin with the JAK2 protein. In vitro studies confirmed the ability of quercetin to inhibit DLBCL cell growth and migration while inducing apoptosis and causing G2/M phase cell cycle arrest. Molecular dynamics simulations revealed that quercetin binds to JAK2 as a type II inhibitor. In vivo studies in U2932 xenograft models demonstrated that QLBTWT inhibited tumor growth in a dose-dependent manner, which was associated with the JAK2/STAT3 signaling pathway. Overall, this study elucidates the therapeutic effect of QLBTWT on DLBCL through quercetin-mediated suppression of the JAK2/STAT3 pathway, offering novel therapeutic insights for DLBCL.
RESUMO
OBJECTIVE: This retrospective single-centre study aimed to compare the efficacy of maxillary second molar intrusion with two different approaches, miniscrew-assisted molar intrusion and traditional segmental archwire intrusion, and to compare orthodontically induced external apical root resorption (OIERR) during intrusion between two groups via cone beam computed tomography (CBCT). MATERIALS AND METHODS: A total of 40 adult patients (33.6 ± 10.3 years old) with supraerupted maxillary second molars due to the loss of antagonistic teeth were recruited, with 20 patients in each group. A segmental archwire with adjacent teeth as an anchorage was used in the control group, and 60-100 g of intrusive force was applied by using miniscrews in the experimental group to intrude the overerupted molars. Full-volume CBCT was performed before and after intrusion, and the amount of intrusion and extent of OIERR of the overerupted molars were compared between the two groups. RESULTS: Supraerupted maxillary second molars could be successfully intruded in an average of 5 months. There was more intrusive movement of the buccal and palatal cusps in the mininscrew group than that in the segmental archwire group (P < .05). The intrusive amount of palatal cusp was 3.67 ± 1.13 mm in the miniscrew group and 2.38 ± 0.74 mm in the segmental archwire group. More palatal OIERR was observed in the miniscrew group (30.3 ± 11.6 mm3) than in the segmental archwire group (21.0 ± 8.66 mm3) (P = .0063). There was no significant difference in OIERR between the two groups for mesial and distal buccal roots (P > .05). CONCLUSION: Miniscrews help effectively with supraerupted maxillary second molar intrusion, especially for palatal cusps. There was more OIERR in the palatal root when using miniscrews compared to the segmental archwire approach.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Maxila , Dente Molar , Procedimentos de Ancoragem Ortodôntica , Reabsorção da Raiz , Técnicas de Movimentação Dentária , Humanos , Técnicas de Movimentação Dentária/instrumentação , Técnicas de Movimentação Dentária/métodos , Dente Molar/diagnóstico por imagem , Reabsorção da Raiz/diagnóstico por imagem , Estudos Retrospectivos , Adulto , Tomografia Computadorizada de Feixe Cônico/métodos , Masculino , Feminino , Maxila/diagnóstico por imagem , Procedimentos de Ancoragem Ortodôntica/instrumentação , Procedimentos de Ancoragem Ortodôntica/métodos , Fios Ortodônticos , Parafusos Ósseos , Resultado do Tratamento , Adulto JovemRESUMO
PURPOSE: Oocyte maturation defect (OOMD) is a rare cause of in vitro fertilization failure characterized by the production of immature oocytes. Compound heterozygous or homozygous PATL2 mutations have been associated with oocyte arrest at the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as morphological changes. METHODS: In this study, we recruited three OOMD cases and conducted a comprehensive multiplatform laboratory investigation. RESULTS: Whole exome sequence (WES) revealed four diagnostic variants in PATL2, nonsense mutation c.709C > T (p.R237*) and frameshift mutation c.1486_1487delinsT (p.A496Sfs*4) were novel mutations that have not been reported previously. Furthermore, the pathogenicity of these variants was predicted using in silico analysis, which indicated detrimental effects. Molecular dynamic analysis suggested that the A496S variant disrupted the hydrophobic segment, leading to structural changes that affected the overall protein folding and stability. Additionally, biochemical and molecular experiments were conducted on cells transfected with wild-type (WT) or mutant PATL2 (p.R237* and p.A496Sfs*4) plasmid vectors. CONCLUSIONS: The results demonstrated that PATL2A496Sfs*4 and PATL2R237* had impacts on protein size and expression level. Interestingly, expression levels of specific genes involved in oocyte maturation and early embryonic development were found to be simultaneously deregulated. The findings in our study expand the variation spectrum of the PATL2 gene, provide solid evidence for counseling on future pregnancies in affected families, strongly support the application of in the diagnosis of OOMD, and contribute to the understanding of PATL2 function.
Assuntos
Sequenciamento do Exoma , Infertilidade Feminina , Proteínas Nucleares , Oócitos , Oogênese , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Códon sem Sentido/genética , Fertilização in vitro , Mutação da Fase de Leitura/genética , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Mutação/genética , Oócitos/crescimento & desenvolvimento , Oócitos/patologia , Oócitos/metabolismo , Oogênese/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genéticaRESUMO
BACKGROUND: Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS: Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS: Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Endorreduplicação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Zinco/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MamíferosRESUMO
BACKGROUND: Normal bile is sterile. Studies have shown that cholangitis after liver transplantation (LT) was associated with a relatively poor prognosis. It remains unclear whether the bacteriobilia or fungibilia impact the patient outcomes in LT recipients, especially with donation after circulatory death (DCD) allografts, which was correlated with a higher risk of allograft failure. METHODS: This retrospective study included 139 LT recipients of DCD grafts from 2019 to 2021. All patients were divided into two groups according to the presence or absence of bacteriobilia or fungibilia. The prevalence and microbial spectrum of postoperative bacteriobilia or fungibilia and its possible association with outcomes, especially hospital stay were analyzed. RESULTS: Totally 135 and 171 organisms were isolated at weeks 1 and 2, respectively. Among all patients included in this analysis, 83 (59.7%) developed bacteriobilia or fungibilia within 2 weeks post-transplantation. The occurrence of bacteriobilia or fungibilia (ß = 7.43, 95% CI: 0.02 to 14.82, P = 0.049), particularly the detection of Pseudomonas (ß = 18.84, 95% CI: 6.51 to 31.07, P = 0.003) within 2 weeks post-transplantation was associated with a longer hospital stay. However, it did not affect the graft and patient survival. CONCLUSIONS: The occurrence of bacteriobilia or fungibilia, particularly Pseudomonas within 2 weeks post-transplantation, could influence the recovery of liver function and was associated with prolonged hospital stay but not the graft and patient survival.
RESUMO
The integration of two-dimensional Ti3C2Tx nanosheets and other materials offers broader application options in the antibacterial field. Ti3C2Tx-based composites demonstrate synergistic physical, chemical, and photodynamic antibacterial activity. In this review, we aim to explore the potential of Ti3C2Tx-based composites in the fabrication of an antibiotic-free antibacterial agent with a focus on their systematic classification, manufacturing technology, and application potential. We investigate various components of Ti3C2Tx-based composites, such as metals, metal oxides, metal sulfides, organic frameworks, photosensitizers, etc. We also summarize the fabrication techniques used for preparing Ti3C2Tx-based composites, including solution mixing, chemical synthesis, layer-by-layer self-assembly, electrostatic assembly, and three-dimensional (3D) printing. The most recent developments in antibacterial application are also thoroughly discussed, with special attention to the medical, water treatment, food preservation, flexible textile, and industrial sectors. Ultimately, the future directions and opportunities are delineated, underscoring the focus of further research, such as elucidating microscopic mechanisms, achieving a balance between biocompatibility and antibacterial efficiency, and investigating effective, eco-friendly synthesis techniques combined with intelligent technology. A survey of the literature provides a comprehensive overview of the state-of-the-art developments in Ti3C2Tx-based composites and their potential applications in various fields. This comprehensive review covers the variety, preparation methods, and applications of Ti3C2Tx-based composites, drawing upon a total of 171 English-language references. Notably, 155 of these references are from the past five years, indicating significant recent progress and interest in this research area.
Assuntos
Antibacterianos , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Titânio/química , Titânio/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologiaRESUMO
Elderly patients with carbapenem-resistant Enterobacteriales (CRE) infections represent considerable mortality rates. But data on the risk factors for the death of elderly patients following such infection remain limited. We aimed to assess the clinical outcomes, identify mortality-associated risk factors, and determine the antibiotic resistance and resistance genes of isolates for these patients. Hospitalized patients aged ≥65 years with CRE infection from January 2020 to December 2020 were retrospectively reviewed. Isolates identification and molecular characterization of CRE were carried out. Logistic regression analysis was applied to assess the potential factors associated with mortality. Of the 123 elderly patients with CRE infection included in our study, the all-cause mortality rate was 39.8% (49/123). The most prevalent pathogen was carbapenem-resistant Klebsiella pneumoniae (CRKP, 116 of 123). The overall rates of multidrug-resistant (MDR) and extensively drug-resistant (XDR) were 100.0% and 66.7%. All CRE isolates exclusively harbored a singular variant of carbapenemase gene, such as bla KPC-2, bla IMP-4, bla NDM-5, or bla OXA-48, while 98.4% of isolates harbored more than one ß-lactamase gene, of which 106 (86.2%) isolates harbored bla CTX-M, 121 (98.4%) isolates harbored bla TEM, and 116 (94.3%) isolates harbored bla SHV. Multivariable logistic regression analysis revealed that mechanical ventilation (adjusted odds ratio (AOR) = 33.607, 95% confidence interval (CI): 4.176-270.463, P < 0.001), use of tigecycline during hospitalization (AOR = 5.868, 95% CI: 1.318-26.130, P = 0.020), and APACHE II score (AOR = 1.305, 95% CI: 1.161-1.468, P < 0.001) were independent factors associated with increasing the mortality of patients with CRE infection, while admission to intensive care unit (ICU) during hospitalization (AOR = 0.046, 95% CI: 0.004-0.496, P = 0.011) was a protective factor. CRE-infected elderly patients with mechanical ventilation, use of tigecycline during hospitalization, and high APACHE II score were related to poor outcomes. The isolates carried various antibiotic genes and presented high antibiotic resistance. These findings provide crucial guidance for clinicians to devise appropriate strategies for treatment.
RESUMO
BACKGROUND: Although exposure to ambient air pollution has been associated with mental disorder, little is known about its potential effects on children and adolescents, especially in Chinese population. We aimed to reveal the relationship of air pollutants with hospital outpatient visits for child and adolescence psychiatry (HOVCAP) in Shenzhen. METHODS: A case-crossover study based on time-series data was applied, and a distributed lag non-linear model (DLNM) was used to evaluate the non-linear and delayed effects of 4 major air pollutants (NO2, PM2.5, SO2 and O3) on HOVCAP. Least absolute shrinkage and selection operator (LASSO) regression was used to control the multicollinearity between covariates and to filter variables. RESULT: A total of 94,660 cases aged 3-18 were collected from 2014 to 2019 in the Mental Health Center of Shenzhen. Results of pollutants at mode value (M0) showed that in the single lag effect result, when the average daily concentration of NO2 at 24 µg/m3, there was a significant effect on HOVCAP over lag 1, lag 4 and lag 5, respectively. The cumulative RR of NO2 M0 value to the outpatient visits were 1.438 (1.137-1.818) over lag 0-2, 1.454 (1.120-1.887) over lag 0-3, 1.466 (1.084-1.982) over lag 0-4, 1.680 (1.199-2.354) over lag 0-5, 1.993 (1.369-2.903) over lag 0-6, and 2.069 (1.372-3.119) over lag 0-7. However, PM2.5, SO2, O3 were not associated with HOVCAP over neither single lag effects nor cumulative effects. The RR values both shown an increase either when NO2 increases by 10 units or when the maximum concentration of NO2 is reached. CONCLUSION: Our study suggests that exposure to the normal air quality of NO2 in Shenzhen may associated with the risk of HOVCAP. However, PM2.5, SO2, O3 were not associated with HOVCAP.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Psiquiatria , Criança , Adolescente , Humanos , Poluentes Atmosféricos/análise , Estudos Cross-Over , Pacientes Ambulatoriais , Dióxido de Nitrogênio , Poluição do Ar/análise , China/epidemiologia , Hospitais , Material Particulado/análiseRESUMO
Silver sulfide in monoclinic phase (α-Ag2S) has attracted significant attention owing to its metal-like ductility and promising thermoelectric properties near room temperature. However, first-principles studies on this material by density functional theory calculations have been challenging as both the symmetry and atomic structure of α-Ag2S predicted from such calculations are inconsistent with experimental findings. Here, we propose that a dynamical approach is imperative for correctly describing the structure of α-Ag2S. The approach is based on a combination of ab initio molecular dynamics simulation and deliberately chosen density functional considering both proper treatment of the van der Waals interaction and on-site Coulomb interaction. The obtained lattice parameters and atomic site occupations of α-Ag2S are in good agreement with experimental data. A stable phonon spectrum at room temperature can be obtained from this structure, which also yields a bandgap in accord with experimental measurements. The dynamical approach thus paves the way for studying this important ductile semiconductor in not only thermoelectric but also optoelectronic applications.
RESUMO
Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.
Assuntos
Quinase 1 do Ponto de Checagem , Células-Tronco Pluripotentes Induzidas , Sirtuína 3 , Animais , Camundongos , Cardiotoxicidade/metabolismo , Gencitabina , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxirredução , Sirtuína 3/genética , Quinase 1 do Ponto de Checagem/metabolismoRESUMO
BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory disease in otolaryngology, mainly manifested as nasal congestion, nasal discharge, facial pain/pressure, and smell disorder. CRS with nasal polyps (CRSwNP), an important phenotype of CRS, has a high recurrence rate even after receiving corticosteroids and/or functional endoscopic sinus surgery. In recent years, clinicians have focused on the application of biological agents in CRSwNP. However, it has not reached a consensus on the timing and selection of biologics for the treatment of CRS so far. SUMMARY: We reviewed the previous studies of biologics in CRS and summarized the indications, contraindications, efficacy assessment, prognosis, and adverse effects of biologics. Also, we evaluated the treatment response and adverse reactions of dupilumab, omalizumab, and mepolizumab in the management of CRS and made recommendations. KEY MESSAGES: Dupilumab, omalizumab, and mepolizumab have been approved for the treatment of CRSwNP by the US Food and Drug Administration. Type 2 and eosinophilic inflammation, need for systemic steroids or contraindication to systemic steroids, significantly impaired quality of life, anosmia, and comorbid asthma are required for the use of biologics. Based on current evidence, dupilumab has the prominent advantage in improving quality of life and reducing the risk of comorbid asthma in CRSwNP among the approved monoclonal antibodies. Most patients tolerate biological agents well in general with few major or severe adverse effects. Biologics have provided more options for severe uncontrolled CRSwNP patients or patients who refuse to have surgery. In the future, more novel biologics will be assessed in high-quality clinical trials and applied clinically.