Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35512705

RESUMO

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Assuntos
Organogênese , Transcriptoma , Animais , DNA/genética , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Camundongos , Organogênese/genética , Gravidez , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
2.
Immunity ; 53(3): 685-696.e3, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783921

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic poses a current world-wide public health threat. However, little is known about its hallmarks compared to other infectious diseases. Here, we report the single-cell transcriptional landscape of longitudinally collected peripheral blood mononuclear cells (PBMCs) in both COVID-19- and influenza A virus (IAV)-infected patients. We observed increase of plasma cells in both COVID-19 and IAV patients and XIAP associated factor 1 (XAF1)-, tumor necrosis factor (TNF)-, and FAS-induced T cell apoptosis in COVID-19 patients. Further analyses revealed distinct signaling pathways activated in COVID-19 (STAT1 and IRF3) versus IAV (STAT3 and NFκB) patients and substantial differences in the expression of key factors. These factors include relatively increase of interleukin (IL)6R and IL6ST expression in COVID-19 patients but similarly increased IL-6 concentrations compared to IAV patients, supporting the clinical observations of increased proinflammatory cytokines in COVID-19 patients. Thus, we provide the landscape of PBMCs and unveil distinct immune response pathways in COVID-19 and IAV patients.


Assuntos
Infecções por Coronavirus/imunologia , Citocinas/imunologia , Influenza Humana/imunologia , Leucócitos Mononucleares/imunologia , Pneumonia Viral/imunologia , Transdução de Sinais/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Pandemias , SARS-CoV-2
3.
Nature ; 605(7909): 315-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314832

RESUMO

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Células-Tronco Pluripotentes , Zigoto , Humanos , Proteínas Cromossômicas não Histona/genética , Embrião de Mamíferos/citologia , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Zigoto/citologia
4.
Nature ; 604(7907): 723-731, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418686

RESUMO

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Assuntos
Macaca fascicularis , Transcriptoma , Animais , Comunicação Celular , Macaca fascicularis/genética , Receptores Virais/genética , Transcriptoma/genética , Via de Sinalização Wnt
5.
Plant Physiol ; 196(1): 261-272, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38758108

RESUMO

Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malatos , Malus , Proteínas de Plantas , Fatores de Transcrição , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas/genética , Plantas Geneticamente Modificadas , Genes de Plantas
6.
Plant Physiol ; 196(1): 432-445, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38788771

RESUMO

Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase , Malatos , Malus , Proteínas de Plantas , Regiões Promotoras Genéticas , Malus/genética , Malus/metabolismo , Malatos/metabolismo , Frutas/genética , Frutas/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Mutagênese Insercional/genética , Plantas Geneticamente Modificadas , Genes de Plantas
7.
Plant Physiol ; 195(4): 2772-2786, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38728429

RESUMO

In fleshy fruit, sugars and acids are central components of fruit flavor and quality. To date, the mechanisms underlying transcriptional regulation of sugar and acid during fruit development remain largely unknown. Here, we combined ATAC-seq with RNA-seq to investigate the genome-wide chromatin accessibility and to identify putative transcription factors related to sugar and acid accumulation during apple (Malus domestica) fruit development. By integrating the differentially accessible regions and differentially expressed genes, we generated a global data set of promoter-accessibility and expression-increased genes. Using this strategy, we constructed a transcriptional regulatory network enabling screening for key transcription factors and target genes involved in sugar and acid accumulation. Among these transcription factors, 5 fruit-specific DNA binding with one finger genes were selected to confirm their regulatory effects, and our results showed that they could affect sugar or acid concentration by regulating the expression of sugar or acid metabolism-related genes in apple fruits. Our transcriptional regulatory network provides a suitable platform to identify candidate genes that control sugar and acid accumulation. Meanwhile, our data set will aid in analyzing other characteristics of apple fruit that have not been illuminated previously. Overall, these findings support a better understanding of the regulatory dynamics during apple fruit development and lay a foundation for quality improvement of apple.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Malus , Açúcares , Malus/genética , Malus/metabolismo , Malus/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Açúcares/metabolismo , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácidos/metabolismo , Metabolismo dos Carboidratos/genética
8.
J Biol Chem ; 299(6): 104783, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146971

RESUMO

N6-methyladenosine (m6A) is the most prevalent reversible RNA modification in the mammalian transcriptome. It has recently been demonstrated that m6A is crucial for male germline development. Fat mass and obesity-associated factor (FTO), a known m6A demethylase, is widely expressed in human and mouse tissues and is involved in manifold biological processes and human diseases. However, the function of FTO in spermatogenesis and male fertility remains poorly understood. Here, we generated an Fto knockout mouse model using CRISPR/Cas9-mediated genome editing techniques to address this knowledge gap. Remarkably, we found that loss of Fto in mice caused spermatogenesis defects in an age-dependent manner, resulting from the attenuated proliferation ability of undifferentiated spermatogonia and increased male germ cell apoptosis. Further research showed that FTO plays a vital role in the modulation of spermatogenesis and Leydig cell maturation by regulating the translation of the androgen receptor in an m6A-dependent manner. In addition, we identified two functional mutations of FTO in male infertility patients, resulting in truncated FTO protein and increased m6A modification in vitro. Our results highlight the crucial effects of FTO on spermatogonia and Leydig cells for the long-term maintenance of spermatogenesis and expand our understanding of the function of m6A in male fertility.


Assuntos
Espermatogênese , Animais , Humanos , Masculino , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Diferenciação Celular/genética , Mutação , Espermatogênese/genética , Fatores Etários , Feminino , Fertilidade/genética , Deleção de Genes , Oligospermia/genética
9.
J Transl Med ; 22(1): 628, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970045

RESUMO

BACKGROUND: Bladder cancer is a common malignancy with high recurrence rate. Early diagnosis and recurrence surveillance are pivotal to patients' outcomes, which require novel minimal-invasive diagnostic tools. The urinary microbiome is associated with bladder cancer and can be used as biomarkers, but the underlying mechanism is to be fully illustrated and diagnostic performance to be improved. METHODS: A total of 23 treatment-naïve bladder cancer patients and 9 non-cancerous subjects were enrolled into the Before group and Control group. After surgery, 10 patients from the Before group were further assigned into After group. Void mid-stream urine samples were collected and sent for 16S rDNA sequencing, targeted metabolomic profiling, and flow cytometry. Next, correlations were analyzed between microbiota, metabolites, and cytokines. Finally, receiver operating characteristic (ROC) curves of the urinary biomarkers were plotted and compared. RESULTS: Comparing to the Control group, levels of IL-6 (p < 0.01), IL-8 (p < 0.05), and IL-10 (p < 0.05) were remarkably elevated in the Before group. The α diversity of urine microbiome was also significantly higher, with the feature microbiota positively correlated to the level of IL-6 (r = 0.58, p < 0.01). Significant differences in metabolic composition were also observed between the Before and Control groups, with fatty acids and fatty acylcarnitines enriched in the Before group. After tumor resection, cytokine levels and the overall microbiome structure in the After group remained similar to that of the Before group, but fatty acylcarnitines were significantly reduced (p < 0.05). Pathway enrichment analysis revealed beta-oxidation of fatty acids was significantly involved (p < 0.001). ROC curves showed that the biomarker panel of Actinomycetaceae + arachidonic acid + IL-6 had superior diagnostic performance, with sensitivity of 0.94 and specificity of 1.00. CONCLUSIONS: Microbiome dysbiosis, proinflammatory environment and altered fatty acids metabolism are involved in the pathogenesis of bladder cancer, which may throw light on novel noninvasive diagnostic tool development.


Assuntos
Disbiose , Ácidos Graxos , Inflamação , Microbiota , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/urina , Inflamação/microbiologia , Masculino , Disbiose/microbiologia , Disbiose/urina , Pessoa de Meia-Idade , Feminino , Ácidos Graxos/metabolismo , Ácidos Graxos/urina , Curva ROC , Citocinas/metabolismo , RNA Ribossômico 16S/genética , Idoso , Estudos de Casos e Controles
10.
Appl Microbiol Biotechnol ; 108(1): 91, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212962

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus that maintains a lifelong latent association with B lymphocytes. Here, a rapid and reliable diagnosis platform for detecting EBV infection, employing loop-mediated isothermal amplification (LAMP) combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB) (termed LAMP Amplification Mediated AuNPs-LFB Detection, LAMAD), was developed in the current study. A set of specific LAMP primers targeting the Epstein-Barr nuclear antigen (EBNA) leader protein (EBNA-LP) gene was designed and synthesized. Subsequently, these templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-LAMAD assay. As a result, the limit of detection (LoD) of the EBV-LAMAD assay was 45 copies/reaction. The EBV-LAMAD assay can detect all representative EBV pathogens used in the study, and of note, no cross-reactions were observed with other non-EBV organisms. Moreover, the whole workflow of the EBV-LAMAD assay can be completed within 70 min, including rapid EBV template preparation, EBV-LAMP amplification, and AuNPs-LFB-mediated detection. Taken together, the EBV-LAMAD assay targeting the EBNA-LP gene is a rapid, simplified, sensitive, reliable, and easy-to-use detection protocol that can be used as a competitive potential diagnostic/screening tool for EBV infection in clinical settings, especially in basic laboratories in resource-limited regions. KEY POINTS: • A novel, simplified, and easy-to-use AuNPs-LFB biosensor was designed and prepared. • LAMP combined with an AuNPs-LFB targeting the novel EBNA-LP gene was established. • EBV-LAMAD is a rapid, sensitive, and reliable detection protocol for EBV infection.


Assuntos
Técnicas Biossensoriais , Infecções por Vírus Epstein-Barr , Nanopartículas Metálicas , Técnicas de Diagnóstico Molecular , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Ouro , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade
11.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443220

RESUMO

Sugar transport across tonoplasts is essential for maintaining cellular sugar homeostasis and metabolic balance in plant cells. It remains unclear, however, how this process is regulated among different classes of sugar transporters. Here, we identified a tonoplast H+/glucose symporter, MdERDL6-1, from apples, which was highly expressed in fruits and exhibited expression patterns similar to those of the tonoplast H+/sugar antiporters MdTST1 and MdTST2. Overexpression of MdERDL6-1 unexpectedly increased not only glucose (Glc) concentration but also that of fructose (Fru) and sucrose (Suc) in transgenic apple and tomato leaves and fruits. RNA sequencing (RNA-seq) and expression analyses showed an up-regulation of TST1 and TST2 in the transgenic apple and tomato lines overexpressing MdERDL6-1 Further studies established that the increased sugar concentration in the transgenic lines correlated with up-regulation of TST1 and TST2 expression. Suppression or knockout of SlTST1 and SlTST2 in the MdERDL6-1-overexpressed tomato background reduced or abolished the positive effect of MdERDL6-1 on sugar accumulation, respectively. The findings demonstrate a regulation of TST1 and TST2 by MdERDL6-1, in which Glc exported by MdERDL6-1 from vacuole up-regulates TST1 and TST2 to import sugars from cytosol to vacuole for accumulation to high concentrations. The results provide insight into the regulatory mechanism of sugar accumulation in vacuoles mediated by the coordinated action of two classes of tonoplast sugar transporters.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Malus/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Vacúolos/metabolismo , Citosol/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Técnicas de Inativação de Genes , Inativação Gênica , Glucose/metabolismo , Solanum lycopersicum/genética , Malus/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA-Seq , Sacarose/metabolismo , Regulação para Cima
12.
BMC Microbiol ; 23(1): 272, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770823

RESUMO

BACKGROUND: Mycobacterium leprae (ML) is the pathogen that causes leprosy, which has a long history and still exists today. ML is an intracellular mycobacterium that dominantly induces leprosy by causing permanent damage to the skin, nerves, limbs and eyes as well as deformities and disabilities. Moreover, ML grows slowly and is nonculturable in vitro. Given the prevalence of leprosy, a highly sensitive and rapid method for the early diagnosis of leprosy is urgently needed. RESULTS: In this study, we devised a novel tool for the diagnosis of leprosy by combining restriction endonuclease, real-time fluorescence analysis and multiple cross displacement amplification (E-RT-MCDA). To establish the system, primers for the target gene RLEP were designed, and the optimal conditions for E-RT-MCDA at 67 °C for 36 min were determined. Genomic DNA from ML, various pathogens and clinical samples was used to evaluate and optimize the E-RT-MCDA assay. The limit of detection (LoD) was 48.6 fg per vessel for pure ML genomic DNA, and the specificity of detection was as high as 100%. In addition, the detection process could be completed in 36 min by using a real-time monitor. CONCLUSION: The E-RT-MCDA method devised in the current study is a reliable, sensitive and rapid technique for leprosy diagnosis and could be used as a potential tool in clinical settings.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Sensibilidade e Especificidade , Hanseníase/diagnóstico , Hanseníase/microbiologia , Pele/microbiologia , DNA , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
13.
J Med Virol ; 95(5): e28757, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212293

RESUMO

Human mpox is a zoonotic disease, similar to smallpox, caused by the mpox virus, which is further subdivided into Congo Basin and West African clades with different pathogenicity. In this study, a novel diagnostic protocol utilizing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 12a nuclease (CRISPR/Cas12a)-mediated recombinase polymerase amplification (RPA) was developed to identify mpox in the Congo Basin and West Africa (CRISPR-RPA). Specific RPA primers targeting D14L and ATI were designed. CRISPR-RPA assay was performed using various target templates. In the designed CRISPR-RPA reaction system, the exponentially amplified RPA amplification products with a protospacer adjacent motif (PAM) site can locate the Cas12a/crRNA complex to its target regions, which successfully activates the CRISPR/Cas12a effector and achieves ultrafast trans-cleavage of a single-stranded DNA probe. The limit of detection for the CRISPR-RPA assay was 10 copies per reaction for D14L- and ATI-plasmids. No cross-reactivity was observed with non-mpox strains, confirming the high specificity of the CRISPR-RPA assay for distinguishing between the Congo Basin and West African mpox. The CRISPR-RPA assay can be completed within 45 min using real-time fluorescence readout. Moreover, the cleavage results were visualized under UV light or an imaging system, eliminating the need for a specialized apparatus. In summary, the developed CRISPR/RPA assay is a visual, rapid, sensitive, and highly specific detection technique that can be used as an attractive potential identification tool for Congo Basin and West African mpox in resource-limited laboratories.


Assuntos
Sistemas CRISPR-Cas , Recombinases , Humanos , Recombinases/genética , Monkeypox virus , Congo , Nucleotidiltransferases , Técnicas de Amplificação de Ácido Nucleico
14.
J Magn Reson Imaging ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706438

RESUMO

BACKGROUND: Lymph node characteristics markedly affect nasopharyngeal carcinoma (NPC) prognosis. Matted node (MN), an important characteristic for lymph node, lacks explored MRI-based prognostic implications. PURPOSE: Investigate MRI-determined MNs' prognostic value in NPC, including 5-year overall survival (OS), distant metastasis-free survival (DMFS), local recurrence-free survival (LRFS), progression-free survival (PFS), and its role in induction chemotherapy (IC). STUDY TYPE: Retrospective cohort survival study. POPULATION: Seven hundred ninety-two patients with non-metastatic NPC (female: 27.3%, >45-year old: 50.1%) confirmed by biopsy. FIELD STRENGTH/SEQUENCE: 5-T/3.0-T, T1-, T2- and post-contrast T1-weighted fast spin echo sequences acquired. ASSESSMENT: MNs were defined as ≥3 nodes abutting with intervening fat plane replaced by extracapsular nodal spread (ENS). Patients were observed every 3 months for 2 years and every 6 months for 5 years using MRI. Follow-up extended from treatment initiation to death or final follow-up. MNs were evaluated by three radiologists with inter-reader reliability calculated. A 1:1 matched-pair method compared survival differences between MN-positive patients with or without IC. Primary endpoints (OS, DMFS, LRFS, PFS) were calculated from therapy initiation to respective event. STATISTICAL TESTS: Kappa values assessed inter-reader reliability. Correlation between MN, ENS, and LNN was studied through Spearman's correlation coefficient. Clinical characteristics were calculated via Fisher's exact, Chi-squared, and Student's t-test. Kaplan-Meier curves and log-rank tests analyzed all time-to-event data. Confounding factors were included in Multivariable Cox proportional hazard models to identify independent prognostic factors. P-values <0.05 were considered statistically significant. RESULTS: MNs incidence was 24.6%. MNs independently associated with decreased 5-year OS, DMFS, and PFS; not LRFS (P = 0.252). MN-positive patients gained significant survival benefit from IC in 5-year OS (88.4% vs. 66.0%) and PFS (76.4% vs. 53.5%), but not DMFS (83.1% vs. 69.9%, P = 0.145) or LRFS (89.9% vs. 77.8%, P = 0.140). DATA CONCLUSION: MNs may independently stratify NPC risk and offer survival benefit from IC. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

15.
Cell Commun Signal ; 21(1): 173, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430253

RESUMO

AIMS: Vascular resident stem cells expressing stem cell antigen-1 (Sca-1+ cells) promote vascular regeneration and remodelling following injury through migration, proliferation and differentiation. The aim of this study was to examine the contributions of ATP signalling through purinergic receptor type 2 (P2R) isoforms in promoting Sca-1+ cell migration and proliferation after vascular injury and to elucidate the main downstream signalling pathways. METHODS AND RESULTS: ATP-evoked changes in isolated Sca-1+ cell migration were examined by transwell assays, proliferation by viable cell counting assays and intracellular Ca2+ signalling by fluorometry, while receptor subtype contributions and downstream signals were examined by pharmacological or genetic inhibition, immunofluorescence, Western blotting and quantitative RT-PCR. These mechanisms were further examined in mice harbouring TdTomato-labelled Sca-1+ cells with and without Sca-1+-targeted P2R knockout following femoral artery guidewire injury. Stimulation with ATP promoted cultured Sca-1+ cell migration, induced intracellular free calcium elevations primarily via P2Y2R stimulation and accelerated proliferation mainly via P2Y6R stimulation. Enhanced migration was inhibited by the ERK blocker PD98059 or P2Y2R-shRNA, while enhanced proliferation was inhibited by the P38 inhibitor SB203580. Femoral artery guidewire injury of the neointima increased the number of TdTomato-labelled Sca-1+ cells, neointimal area and the ratio of neointimal area to media area at 3 weeks post-injury, and all of these responses were reduced by P2Y2R knockdown. CONCLUSIONS: ATP induces Sca-1+ cell migration through the P2Y2R-Ca2+-ERK signalling pathway, and enhances proliferation through the P2Y6R-P38-MAPK signalling pathway. Both pathways are essential for vascular remodelling following injury. Video Abstract.


Assuntos
Remodelação Vascular , Lesões do Sistema Vascular , Animais , Camundongos , Proliferação de Células , Transdução de Sinais , Movimento Celular , Trifosfato de Adenosina
16.
J Cardiovasc Magn Reson ; 25(1): 72, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031154

RESUMO

BACKGROUND: The 2019 arrhythmogenic right ventricular cardiomyopathy (ARVC) risk model has proved insufficient in the capability of predicting ventricular arrhythmia (VA) risk in non-classical arrhythmogenic cardiomyopathy (ACM). Furthermore, the prognostic value of ringlike late gadolinium enhancement (LGE) of the left ventricle in non-classical ACM remains unknown. We aimed to assess the incremental value of ringlike LGE over the 2019 ARVC risk model in predicting sustained VA in patients with non-classical ACM. METHODS: In this retrospective study, consecutive patients with non-classical ACM who underwent CMR from January 2011 to January 2022 were included. The pattern of LGE was categorized as no, non-ringlike, and ringlike LGE. The primary outcome was defined as the occurrence of sustained VA. Univariable and multivariable Cox regression analysis was used to evaluate the impact of LGE patterns on sustained VA and area under curve (AUC) was calculated for the incremental value of ringlike LGE. RESULTS: A total of 73 patients were collected in the final cohort (mean age, 39.3 ± 14.4 years, 51 male), of whom 10 (13.7%) had no LGE, 33 (45.2%) had non-ringlike LGE, and 30 (41.1%) had ringlike LGE. There was no statistically significant difference in the 5-year risk score among the three groups (P = 0.190). During a median follow-up of 34 (13-56) months, 34 (46.6%) patients experienced sustained VA, including 1 (10.0%), 13 (39.4%) and 20 (66.7%) of patients with no, non-ringlike and ringlike LGE, respectively. After multivariable adjustment, ringlike LGE remained independently associated with the presence of sustained VA (adjusted hazard ratio: 6.91, 95% confidence intervals: 1.89-54.60; P = 0.036). Adding ringlike LGE to the 2019 ARVC risk model showed significantly incremental prognostic value for sustained VA (AUC: 0.80 vs. 0.67; P = 0.024). CONCLUSION: Ringlike LGE provides independent and incremental prognostic value over the 2019 ARVC risk model in patients with non-classical ACM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Meios de Contraste , Humanos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Prognóstico , Gadolínio , Estudos Retrospectivos , Valor Preditivo dos Testes , Arritmias Cardíacas , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética
17.
Phys Chem Chem Phys ; 25(10): 7338-7343, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825463

RESUMO

Two-dimensional (2D) materials with nontrivial band crossings, namely linear or double Weyl points, have been attracting tremendous attention. However, it remains a challenge to find existing 2D materials that host such nontrivial states. Here, based on first-principles calculations and symmetry analysis, we discover that the recently synthesized BL-α borophene is a metal with a tunable double Weyl point. Remarkably, both bands forming the double Weyl point have upward band bending. In addition, it shows an anisotropic band dispersion when away from the double Weyl point. To characterize its anisotropy, we define a quantity G, which could be changed from 1 to infinity when going from the energy of the double Weyl point to the Fermi level. Furthermore, the outer band of the double Weyl point is sensitive to biaxial strain, and could be changed from upward bending to downward bending. During this process, it has a critical case, in which the outer-band becomes flat. The changes in outer-band induce a variation in the density of states around the double Weyl point, thus giving rise to changes in its macroscopic physical properties. Applying a uniaxial strain enables the double Weyl point to transform into a pair of Weyl points by breaking the threefold rotation of BL-α borophene. When breaking the inversion symmetry and in-plane twofold rotation symmetry by a vertical symmetry, the double Weyl point still persisted; meanwhile, an additional pair of linear Weyl points appears on the high-symmetry path, giving rise to a Weyl complex case. Overall, our work thus provides an existing 2D material, BL-α borophene, to study the nontrivial band crossings in 2D.

18.
Arch Insect Biochem Physiol ; 114(3): e22048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602789

RESUMO

Niemann-Pick C (NPC) disease is a neurodegenerative disorder related to cellular sterol trafficking and mutation of NPC1 gene is the main cause for this disease. The function of NPC1 have been reported in a few insects but rarely studied in hemipterans. In the present study, we investigate the function of NPC1 in a hemipteran pest, the whitefly Bemisia tabaci. It was found that B. tabaci had only one NPC1 homolog (BtNPC1), in contrast to two homologs in many other insects. BtNPC1 was ubiquitously expressed at all developmental stages and body parts of whiteflies, with the highest level in adult abdomen, and the expression of BtNPC1 was induced by cholesterol feeding. To further investigate the function of BtNPC1, leaf-mediated RNA interference experiments were carried out. Results showed that knockdown of BtNPC1 led to reduced survival of whiteflies, as well as reduced fecundity. Moreover, knockdown of BtNPC1 affected the development and metamorphosis of whitefly nymphs. Taken these together, we conclude that BtNPC1 played a crucial role in sterol-related biological processes of B. tabaci and might be used as an insecticide target for development of novel pest management approaches.

19.
J Med Genet ; 59(4): 335-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085947

RESUMO

BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) is one of the most common cancers worldwide and includes cancers arising from the oral cavity, pharynx and larynx. Genome-wide association studies have found several genetic variants related to the risk of SCCHN; however, they could only explain a small fraction of the heritability. Thus, more susceptibility loci associated with SCCHN need to be identified. METHODS: An association study was conducted by genotyping 555 patients with SCCHN and 1367 controls in a Chinese population. Single-variant association analysis was conducted on 63 373 SNPs, and the promising variants were then confirmed by a two-stage validation with 1875 SCCHN cases and 4637 controls. Bioinformatics analysis and functional assays were applied to uncover the potential pathogenic mechanism of the promising variants and genes associated with SCCHN. RESULTS: We first identified three novel genetic variants significantly associated with the risk of SCCHN (p=7.45×10-7 for rs2517611 at 6p22.1, p=1.76×10-9 for rs2524182 at 6p21.33 and p=2.17×10-10 for rs3131018 at 6p21.33). Further analysis and biochemical assays showed that rs3094187, which was in a region in high linkage disequilibrium with rs3131018, could modify TCF19 expression by regulating the binding affinity of the transcription factor SREBF1 to the promoter of TCF19. In addition, experiments revealed that the inhibition of TCF19 may affect several important pathways involved in tumourigenesis and attenuate the cell proliferation and migration of SCCHN. CONCLUSION: These findings offer important evidence that functional genetic variants could contribute to development of SCCHN and that TCF19 may function as a putative susceptibility gene for SCCHN.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estudos de Casos e Controles , China/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética
20.
BMC Med Imaging ; 23(1): 14, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698134

RESUMO

BACKGROUND: The aim was to compare the diffusion tensor imaging (DTI) indices derived from human hearts between 1.5 T and 3.0 T scanners. Additionally, the reproducibility of DTI indices was assessed between 1.5 T and 3.0 T scanners. METHODS: A total of 18 ex-vivo hearts were derived from patients who underwent heart transplantation. The DTI schemes were performed at 1.5 T and 3.0 T, respectively. Then, the same slices from each ex-vivo heart were selected for image analysis. The student's t-test or Wilcoxon-rank test was used to compare the statistical differences. The agreement of DTI indices was mainly reported as the interclass correlation coefficient (ICC). RESULTS: No significant differences (all P > 0.05) were found in the DTI indices between 1.5 T and 3.0 T scanners. Interestingly, the ICC of all DTI indices was relatively lower with a low b-value. The reproducibility of the helix angle (HA) was relatively lower when compared to the other DTI indices. CONCLUSION: The DTI indices of ex-vivo human hearts between 1.5 T and 3.0 T scanners had no significant differences. The consistency of DTI indices needed caution using a low b-value with different field strengths, and the relatively low reproducibility of HA should be considered.


Assuntos
Imagem de Tensor de Difusão , Coração , Humanos , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA