Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18058, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38098246

RESUMO

Ionizing radiation (IR)-induced intestinal injury is usually accompanied by high lethality. Intestinal stem cells (ISCs) are critical and responsible for the regeneration of the damaged intestine. Astragalus polysaccharide (APS), one of the main active ingredients of Astragalus membranaceus (AM), has a variety of biological functions. This study was aimed to investigate the potential effects of APS on IR-induced intestine injury via promoting the regeneration of ISCs. We have established models of IR-induced intestinal injury and our results showed that APS played great radioprotective effects on the intestine. APS improved the survival rate of irradiated mice, reversed the radiation damage of intestinal tissue, increased the survival rate of intestinal crypts, the number of ISCs and the expression of intestinal tight junction-related proteins after IR. Moreover, APS promoted the cell viability while inhibited the apoptosis of MODE-K. Through organoid experiments, we found that APS promoted the regeneration of ISCs. Remarkably, the results of network pharmacology, RNA sequencing and RT-PCR assays showed that APS significantly upregulated the HIF-1 signalling pathway, and HIF-1 inhibitor destroyed the radioprotection of APS. Our findings suggested that APS promotes the regeneration of ISCs through HIF-1 signalling pathway, and it may be an effective radioprotective agent for IR-induced intestinal injury.


Assuntos
Astrágalo , Transdução de Sinais , Camundongos , Animais , Polissacarídeos/farmacologia , Intestinos , Células-Tronco
2.
J Environ Manage ; 366: 121792, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002459

RESUMO

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.

3.
J Am Chem Soc ; 145(11): 6057-6066, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36888741

RESUMO

The development of efficient photocatalysts for N2 fixation to produce NH3 under ambient conditions remains a great challenge. Since covalent organic frameworks (COFs) possess predesignable chemical structures, good crystallinity, and high porosity, it is highly significant to explore their potential for photocatalytic nitrogen conversion. Herein, we report a series of isostructural porphyrin-based COFs loaded with Au single atoms (COFX-Au, X = 1-5) for photocatalytic N2 fixation. The porphyrin building blocks act as the docking sites to immobilize Au single atoms as well as light-harvesting antennae. The microenvironment of the Au catalytic center is precisely tuned by controlling the functional groups at the proximal and distal positions of porphyrin units. As a result, COF1-Au decorated with strong electron-withdrawing groups exhibits a high activity toward NH3 production with rates of 333.0 ± 22.4 µmol g-1 h-1 and 37.0 ± 2.5 mmol gAu-1 h-1, which are 2.8- and 171-fold higher than that of COF4-Au decorated with electron-donating functional groups and a porphyrin-Au molecular catalyst, respectively. The NH3 production rates could be further increased to 427.9 ± 18.7 µmol g-1 h-1 and 61.1 ± 2.7 mmol gAu-1 h-1 under the catalysis of COF5-Au featuring two different kinds of strong electron-withdrawing groups. The structure-activity relationship analysis reveals that the introduction of electron-withdrawing groups facilitates the separation and transportation of photogenerated electrons within the entire framework. This work manifests that the structures and optoelectronic properties of COF-based photocatalysts can be finely tuned through a rational predesign at the molecular level, thus leading to superior NH3 evolution.

4.
Radiology ; 307(3): e222052, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36853178

RESUMO

Background In rheumatoid arthritis (RA), fibroblast-like synoviocyte cells, which are involved in inflammation of the articular cartilage and bone, overexpress fibroblast activation protein (FAP). This is a feature that could be leveraged to improve imaging assessment of disease. Purpose To determine the performance of gallium 68 (68Ga)-labeled FAP inhibitor (FAPI) in assessing joint disease activity of RA and to compare with fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging. Materials and Methods Twenty participants with RA (15 women; mean age, 55 years ± 10 [SD]) were prospectively enrolled from September 2020 to December 2021 and underwent clinical and laboratory assessment of disease activity and dual-tracer PET/CT (68Ga-FAPI and 18F-FDG) imaging. Imaging-derived variables of PET joint count (the number of joints positive for RA at PET) and PET articular index (a sum of the points of the joints using a three-point scale) were correlated to clinical and laboratory variables of disease activity. Results The combined output of both PET/CT techniques helped detect 244 affected joints, all of which showed positive results at 68Ga-FAPI PET/CT. However, fifteen of 244 (6.1%) FAPI-avid joints in six of 20 (30%) participants were not detected at 18F-FDG PET/CT. The maximum standardized uptake value of the most affected joint in each participant was higher in 68Ga-FAPI than in 18F-FDG PET/CT (9.54 ± 4.92 vs 5.85 ± 2.81, respectively; P = .001). The maximum standardized uptake values of the joints at both 68Ga-FAPI and 18F-FDG PET/CT were positively correlated with laboratory evaluation of C-reactive protein levels (r = 0.49 [P = .03] and 0.54 [P = .01], respectively). The PET joint count and PET articular index scores at 68Ga-FAPI PET/CT were also positively correlated with most clinical disease activity variables and radiographic progression of joint damage (P < .05). Conclusion In participants with rheumatoid arthritis who underwent gallium 68 fibroblast activation protein inhibitor PET/CT, the extent of joint involvement correlated with clinical and laboratory variables of disease activity and showed a greater amount and degree of affected joints than at fluorine 18 fluorodeoxyglucose PET/CT. Clinical trial registration no. NCT04514614 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Williams and Ahlman in this issue.


Assuntos
Artrite Reumatoide , Quinolinas , Humanos , Feminino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Fluordesoxiglucose F18 , Radioisótopos de Gálio
5.
Phytother Res ; 37(10): 4557-4571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37427974

RESUMO

Cryptotanshinone (CPT), a major biological active ingredient extracted from root of Salvia miltiorrhiza (Danshen), has shown several pharmacological activities. However, the effect of CPT on radiation-induced lung fibrosis (RILF) is unknown. In this study, we explored the protective effects of CPT on RILF from gut-lung axis angle, specifically focusing on the bile acid (BA)-gut microbiota axis. We found that CPT could inhibit the process of epithelial mesenchymal transformation (EMT) and suppress inflammation to reduce the deposition of extracellular matrix in lung fibrosis in mice induced by radiation. In addition, 16S rDNA gene sequencing and BAs-targeted metabolomics analysis demonstrated that CPT could improve the dysbiosis of gut microbiota and BA metabolites in RILF mice. CPT significantly enriched the proportion of the beneficial genera Enterorhabdus and Akkermansia, and depleted that of Erysipelatoclostridium, which were correlated with increased intestinal levels of several farnesoid X receptor (FXR) natural agonists, such as deoxycholic acid and lithocholic acid, activating the FXR pathway. Taken together, these results suggested that CPT can regulate radiation-induced disruption of gut microbiota and BAs metabolism of mice, and reduce the radiation-induced lung inflammation and fibrosis. Thus, CPT may be a promising drug candidate for treating RILF.

6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1463-1482, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-37005834

RESUMO

Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.


Assuntos
Asteraceae , Sesquiterpenos , Triterpenos , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Anti-Inflamatórios , Compostos Fitoquímicos/farmacologia
7.
Angew Chem Int Ed Engl ; 62(23): e202219241, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017231

RESUMO

Metal-organic framework catalysts bring new opportunities for CO2 electrocatalysis. Herein, we first conduct density-functional theory calculations and predict that Co-based porphyrin porous organic layers (Co-PPOLs) exhibit good activity for CO2 conversion because of the low *CO adsorption energy at Co-N4 sites, which facilitates *CO desorption and CO formation. Then, we prepare two-dimensional Co-PPOLs with exclusive Co-N4 sites through a facile surfactant-assisted bottom-up method. The ultrathin feature ensures the exposure of catalytic centers. Together with large specific area, high electrical conductivity and CO2 adsorption capability, Co-PPOLs achieve a peak faradaic efficiency for CO production (FECO =94.2 %) at a moderate potential in CO2 electroreduction, accompanied with good stability. Moreover, Co-PPOLs reach an industrial-level current above 200 mA in a membrane electrode assembly reactor, and maintain near-unity CO selectivity (FECO >90 %) over 20 h in CO2 electrolysis.

8.
Angew Chem Int Ed Engl ; 62(18): e202301802, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867435

RESUMO

Oriented synthesis of transition metal sulfides (TMSs) with controlled compositions and crystal structures has long been promising for electronic devices and energy applications. Liquid-phase cation exchange (LCE) is a well-studied route by varying the compositions. However, achieving crystal structure selectivity is still a great challenge. Here, we demonstrate gas-phase cation exchange (GCE), which can induce a specific topological transformation (TT), for the synthesis of versatile TMSs with identified cubic or hexagonal crystal structures. The parallel six-sided subunit (PSS), a new descriptor, is defined to describe the substitution of cations and the transition of the anion sublattice. Under this principle, the band gap of targeted TMSs can be tailored. Using the photocatalytic hydrogen evolution as an example, the optimal hydrogen evolution rate of a zinc-cadmium sulfide (ZCS4) is determined to be 11.59 mmol h-1 g-1 , showing a 36.2-fold improvement over CdS.

9.
Plant Physiol ; 186(1): 388-406, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33599732

RESUMO

Ethiopian mustard (Brassica carinata) in the Brassicaceae family possesses many excellent agronomic traits. Here, the high-quality genome sequence of B. carinata is reported. Characterization revealed a genome anchored to 17 chromosomes with a total length of 1.087 Gb and an N50 scaffold length of 60 Mb. Repetitive sequences account for approximately 634 Mb or 58.34% of the B. carinata genome. Notably, 51.91% of 97,149 genes are confined to the terminal 20% of chromosomes as a result of the expansion of repeats in pericentromeric regions. Brassica carinata shares one whole-genome triplication event with the five other species in U's triangle, a classic model of evolution and polyploidy in Brassica. Brassica carinata was deduced to have formed ∼0.047 Mya, which is slightly earlier than B. napus but later than B. juncea. Our analysis indicated that the relationship between the two subgenomes (BcaB and BcaC) is greater than that between other two tetraploid subgenomes (BjuB and BnaC) and their respective diploid parents. RNA-seq datasets and comparative genomic analysis were used to identify several key genes in pathways regulating disease resistance and glucosinolate metabolism. Further analyses revealed that genome triplication and tandem duplication played important roles in the expansion of those genes in Brassica species. With the genome sequencing of B. carinata completed, the genomes of all six Brassica species in U's triangle are now resolved. The data obtained from genome sequencing, transcriptome analysis, and comparative genomic efforts in this study provide valuable insights into the genome evolution of the six Brassica species in U's triangle.


Assuntos
Evolução Biológica , Brassica/genética , Genoma de Planta , Poliploidia , Modelos Biológicos
10.
Ecotoxicol Environ Saf ; 248: 114341, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442401

RESUMO

Radiation-induced intestinal damage (RIID) is a serious disease with limited effective treatment. Nuclear explosion, nuclear release, nuclear application and especially radiation therapy are all highly likely to cause radioactive intestinal damage. The intestinal microecology is an organic whole with a symbiotic relationship formed by the interaction between a relatively stable microbial community living in the intestinal tract and the host. Imbalance and disorders of intestinal microecology are related to the occurrence and development of multiple systemic diseases, especially intestinal diseases. Increasing evidence indicates that the gut microbiota and its metabolites play an important role in the pathogenesis and prevention of RIID. Radiation leads to gut microbiota imbalance, including a decrease in the number of beneficial bacteria and an increase in the number of harmful bacteria that cause RIID. In this review, we describe the pathological mechanisms of RIID, the changes in intestinal microbiota, the metabolites induced by radiation, and their mechanism in RIID. Finally, the mechanisms of various methods for regulating the microbiota in the treatment of RIID are summarized.


Assuntos
Microbioma Gastrointestinal , Microbiota , Intestinos
11.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144756

RESUMO

Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 µM) and a low detection limit (0.253 µM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.


Assuntos
Nanocompostos , Nanotubos de Carbono , Adenina/análogos & derivados , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Molibdênio , Nanocompostos/química , Nanotubos de Carbono/química , Organofosfonatos , Reprodutibilidade dos Testes , Zircônio
12.
Zhongguo Zhong Yao Za Zhi ; 47(3): 593-602, 2022 Feb.
Artigo em Zh | MEDLINE | ID: mdl-35178941

RESUMO

Chinese medicine processing is a procedure to process medicinal materials under the guidance of traditional Chinese medicine(TCM) theories by using unique methods in China. The medicinal materials can only be used clinically after proper processing. With the development of the modernization of TCM, it is difficult to solve the problems in the inheritance, development, and internationalization of Chinese medicine processing. Metabonomics, a new omics technology developed at the end of the last century, is used to infer the physiological or pathological conditions of the organism with the methods such as NMR and LC-MS via investigating the changes in endogenous small molecule metabolic network after the organism is stimulated by external environment. Metabonomics coincides with the holistic view of TCM because it displays the characteristics of integrity, comprehensiveness, and dynamics, and it has been widely applied in the field of Chinese medicine processing in recent years. This study summarized the application of metabonomics in the processing mechanism and quality control of Chinese medicine processing and prospected the development of this technology in the field of Chinese medicine processing.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Cromatografia Líquida , Espectrometria de Massas , Metabolômica/métodos , Controle de Qualidade
13.
Zhongguo Zhong Yao Za Zhi ; 47(2): 367-375, 2022 Jan.
Artigo em Zh | MEDLINE | ID: mdl-35178978

RESUMO

Syndrome is a nonlinear "internal-excess external-deficiency", "dynamic spatial-temporal" and "multi-dimensional" complex system and thus only by using a versatile method can the connotation be expounded. Metabonomics, which is dynamic, holistic, and systematic, is consistent with the overall mode of traditional Chinese medicine(TCM)(holistic view and syndrome differentiation and treatment). Therefore, metabonomics is very important for the research on the differentiation, material basis, and metabolic pathways of syndromes, and efficacy on syndromes. This study reviewed the application of metabonomics in the study of TCM syndromes in recent years, which is expected to objectify the research on TCM syndromes.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Metabolômica , Síndrome
14.
Hepatology ; 71(1): 130-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31148183

RESUMO

Hepatocellular carcinoma (HCC) is one of the fastest-rising causes of cancer-related death worldwide, but its deficiency of specific biomarkers and therapeutic targets in the early stages lead to severe inadequacy in the early diagnosis and treatment of HCC. Covalently closed circular RNA (circRNA), which was once considered an aberrant splicing by-product, is now drawing new interest in cancer research because of its remarkable functionality. Beneath the surface of the dominant functional proteins events, a hidden circRNA-centric noncoding regulatory RNAs network active in the very early stage of HCC is here revealed by a genome-wide analysis of mRNA, circRNA, and microRNA (miRNA) expression profiles. Circ-CDYL (chromodomain Y like) is specifically up-regulated in the early stages of HCC and therefore contributes to the properties of epithelial cell adhesion molecule (EPCAM)-positive liver tumor-initiating cells. Circ-CDYL interacts with mRNAs encoding hepatoma-derived growth factor (HDGF) and hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by acting as the sponge of miR-892a and miR-328-3p, respectively. Subsequently, activation of the phosphoinositide 3-kinase (PI3K)-AKT serine/threonine kinase-mechanistic target of rapamycin kinase complex 1/ß-catenin and NOTCH2 pathways, which promote the expression of the effect proteins, baculoviral IAP repeat containing 5 (BIRC5 or SURVIVIN) and MYC proto-oncogene, is influenced by circ-CDYL. A treatment incorporating circ-CDYL interference and traditional enzyme inhibitors targeting PI3K and HIF1AN demonstrated highly effective inhibition of stem-like characteristics and tumor growth in HCC. Finally, we demonstrated that circ-CDYL expression or which combined with HDGF and HIF1AN are both independent markers for discrimination of early stages of HCC with the odds ratios of 1.09 (95% confidence interval [CI], 1.02-1.17) and 124.58 (95% CI, 13.26-1170.56), respectively. Conclusion: These findings uncover a circRNA-centric noncoding regulatory RNAs network in the early stages of HCC and thus provide a possibility for surveillance and early treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas Correpressoras/fisiologia , Hidroliases/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Circular/fisiologia , RNA não Traduzido/fisiologia , Humanos , Estadiamento de Neoplasias , Proto-Oncogene Mas , Células Tumorais Cultivadas
15.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948385

RESUMO

In plants, seedling growth is subtly controlled by multiple environmental factors and endogenous phytohormones. The cross-talk between sugars and brassinosteroid (BR) signaling is known to regulate plant growth; however, the molecular mechanisms that coordinate hormone-dependent growth responses with exogenous sucrose in plants are incompletely understood. Skotomorphogenesis is a plant growth stage with rapid elongation of the hypocotyls. In the present study, we found that low-concentration sugars could improve skotomorphogenesis in a manner dependent on BR biosynthesis and TOR activation. However, accumulation of BZR1 in bzr1-1D mutant plants partially rescued the defects of skotomorphogenesis induced by the TOR inhibitor AZD, and these etiolated seedlings displayed a normal phenotype like that of wild-type seedlings in response to both sucrose and non-sucrose treatments, thereby indicating that accumulated BZR1 sustained, at least partially, the sucrose-promoted growth of etiolated seedlings (skotomorphogenesis). Moreover, genetic evidence based on a phenotypic analysis of bin2-3bil1bil2 triple-mutant and gain-of-function bin2-1 mutant plant indicated that BIN2 inactivation was conducive to skotomorphogenesis in the dark. Subsequent biochemical and molecular analyses enabled us to confirm that sucrose reduced BIN2 levels via the TOR-S6K2 pathway in etiolated seedlings. Combined with a determination of the cellulose content, our results indicated that sucrose-induced BIN2 degradation led to the accumulation of BZR1 and the enhancement of cellulose synthesis, thereby promoting skotomorphogenesis, and that BIN2 is the converging node that integrates sugar and BR signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Açúcares/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteólise , Transdução de Sinais
16.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770975

RESUMO

Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV's ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection-chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.


Assuntos
Aciclovir/efeitos adversos , Aciclovir/análise , Antivirais/efeitos adversos , Antivirais/análise , Aciclovir/síntese química , Antivirais/síntese química , Humanos , Estrutura Molecular
17.
Molecules ; 26(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885803

RESUMO

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/fisiologia , Doenças das Plantas/microbiologia , Brassica napus/microbiologia , Brassica napus/fisiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Fungos/enzimologia , Interações Hospedeiro-Patógeno , Hidrólise , Malus/microbiologia , Malus/fisiologia , Polissacarídeos/metabolismo , Triticum/microbiologia , Triticum/fisiologia , Madeira/microbiologia , Madeira/fisiologia
18.
Med Sci Monit ; 26: e925401, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33132382

RESUMO

BACKGROUND Although mutations and dysfunction of mitochondrial DNA (mtDNA) are related to a variety of diseases, few studies have focused on the relationship between mtDNA and coronary artery disease (CAD), especially the relationship between rare variants and CAD. MATERIAL AND METHODS Two-stage high-throughput sequencing was performed to detect mtDNA variants or heteroplasmy and the relationship between them and CAD phenotypes. In the discovery stage, mtDNA was analyzed by high-throughput sequencing of long-range PCR products generated from the peripheral blood of 85 CAD patients and 80 demographically matched controls. In the validation stage, high-throughput sequencing for mtDNA target regions captured by GenCap Kit was performed on 100 CAD samples and 100 controls. Finally, tRNA fine mapping was performed between our study and the reported Chinese CAD study. RESULTS Among the tRNA genes, we confirmed a highly conserved rare variant, A5592G, previously reported in the Chinese CAD study, and 2 novel rare mutations that reached Bonferroni's correction significance in the combined analysis were found (P=7.39×10-4 for T5628C in tRNAAla and P=1.01×10-5 for T681C in 12S rRNA) in the CAD study. Both of them were predicted to be pathological, with T5628C disrupting an extremely conservative base-pairing at the AC stem of tRNAAla. Furthermore, we confirmed the controversial issue that the number of non-synonymous heteroplasmic sites per sample was significantly higher in CAD patients. CONCLUSIONS In conclusion, our study confirmed the contribution of rare variants in CAD and showed that CAD patients had more non-synonymous heterogeneity mutations, which may be helpful in identifying the genetic and molecular basis of CAD.


Assuntos
Doença da Artéria Coronariana/genética , DNA Mitocondrial/análise , RNA de Transferência de Alanina/genética , Idoso , China , Feminino , Heteroplasmia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mutação
19.
FASEB J ; 32(5): 2722-2734, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29298863

RESUMO

In the context of diabetes, obesity, and metabolic syndrome, the inflammatory signaling has critical roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), but the underlying mechanisms remain poorly delineated. Herein, early and persistently elevated, proinflammatory cytokine HMGB1 expression was detected in a high-fat diet (HFD)-induced NAFLD model in C57BL/6 mice. The expression and extracellular release of HMGB1 was rapidly and dramatically induced by saturated palmitic acid in vitro. HFD-induced inflammatory response and liver function impairment were both mitigated after the inhibition of endogenous HMGB1 by neutralizing antibody in vivo. The up-regulation of HMGB1 was thought to be modified by dual channels: in the transcriptional level, it was regulated by JNK1/JNK2-ATF2 axis; post-transcriptionally, it was regulated by the microRNA (miR)-200 family, especially miR-429. miR-429 liver conditional knockout mice (miR-429Δhep), fed either a normal diet or an HFD, showed severe liver inflammation and dysfunction, accompanied by greater expression of HMGB1. Intriguingly, the up-regulation and release of HMGB1 could in turn self-activate TLR4-JNK1/JNK2-ATF2 signaling, thus forming a positive feedback. Our findings reveal a novel mechanism by which HMGB1 expression was regulated by both the JNK1/2-ATF2 axis and the miR-200 family, which provides a potential new approach for the treatment of NAFLD.-Chen, X., Ling, Y., Wei, Y., Tang, J., Ren, Y., Zhang, B., Jiang, F., Li, H., Wang, R., Wen, W., Lv, G., Wu, M., Chen, L., Li, L., Wang, H. Dual regulation of HMGB1 by combined JNK1/2-ATF2 axis with miR-200 family in nonalcoholic steatohepatitis in mice.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteína HMGB1/biossíntese , MicroRNAs/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Fator 2 Ativador da Transcrição/genética , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Proteína HMGB1/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia
20.
Cell Physiol Biochem ; 50(4): 1474-1495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359990

RESUMO

BACKGROUND/AIMS: Current practical advances in high-throughput data technologies including RNA-sequencing have led to the identification of long non-coding RNAs (lncRNAs) for potential clinical application against bladder urothelial cancer (BLCA). However, most previous studies focused on the clinical value of individual lncRNAs, which has limited the potential for future clinical application. METHODS: In this study, RNA-sequencing data of lncRNAs was downloaded from The Cancer Genome Atlas database. Risk score was constructed based on survival-associated lncRNAs identified using differential expression analysis as well as univariate and multivariate Cox proportional hazards regression analysis. Receiver operating characteristic and Kaplan-Meier curve analyses were employed to evaluate the clinical and prognostic value of risk scores. Bioinformatics analyses were used to investigate the potential mechanisms of newly identified lncRNAs. RESULTS: Among 2,127 differentially expressed lncRNAs (DELs), four new lncRNAs (AC145124.1, AC010168.2, MIR200CHG, and AC098613.1) showed valuable prognostic effects in BLCA patients. More importantly, the four-DEL-based risk score had the potential to become an independent marker for the survival status prediction of BLCA patients. Distinct co-expressed genes and signaling pathways were identified when BLCA was categorized into low- and high-risk groups. Furthermore, a protein-coding gene, HIST4H4 was found only 68 bp from the AC010168.2 DEL. HIST4H4 expression level was evidently up-regulated and positively correlated with AC010168.2 in BLCA patients. CONCLUSION: This in silico investigation pioneers the future investigation of the utility of prognostic lncRNAs for BLCA.


Assuntos
RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/patologia , Área Sob a Curva , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Fatores de Risco , Análise de Sequência de RNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA