Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996813

RESUMO

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Assuntos
Encefalopatias , Moléculas de Adesão Celular , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Alelos , Encefalopatias/genética , Moléculas de Adesão Celular/genética , Células Endoteliais/metabolismo , Hemorragias Intracranianas/genética , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Junções Íntimas/genética , Humanos
2.
Am J Kidney Dis ; 83(2): 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717846

RESUMO

RATIONALE & OBJECTIVE: Genetic etiologies have been identified among approximately 10% of adults with chronic kidney disease (CKD). However, data are lacking regarding the prevalence of monogenic etiologies especially among members of minority groups. This study characterized the genetic markers among members of an Israeli minority group with end-stage kidney disease (ESKD). STUDY DESIGN: A national-multicenter cross-sectional study of Israeli Druze patients (an Arabic-speaking Near-Eastern transnational population isolate) who are receiving maintenance dialysis for ESKD. All study participants underwent exome sequencing. SETTING & PARTICIPANTS: We recruited 94 adults with ESKD, comprising 97% of the total 97 Druze individuals throughout Israel being treated with dialysis during the study period. PREDICTORS: Demographics and clinical characteristics of kidney disease. OUTCOME: Genetic markers. ANALYTICAL APPROACH: Whole-exome sequencing and the relationship of markers to clinical phenotypes. RESULTS: We identified genetic etiologies in 17 of 94 participants (18%). None had a previous molecular diagnosis. A novel, population-specific, WDR19 homozygous pathogenic variant (p.Cys293Tyr) was the most common genetic finding. Other monogenic etiologies included PKD1, PKD2, type IV collagen mutations, and monogenic forms of noncommunicable diseases. The pre-exome clinical diagnosis corresponded to the final molecular diagnosis in fewer than half of the participants. LIMITATIONS: This study was limited to Druze individuals, so its generalizability may be limited. CONCLUSIONS: Exome sequencing identified a genetic diagnosis in approximately 18% of Druze individuals with ESKD. These results support conducting genetic analyses in minority populations with high rates of CKD and for whom phenotypic disease specificity may be low. PLAIN-LANGUAGE SUMMARY: Chronic kidney disease (CKD) affects many people worldwide and has multiple genetic causes. However, there is limited information on the prevalence of genetic etiologies, especially among minority populations. Our national-multicenter study focused on Israeli Druze patients. Using exome-sequencing, we identified previously undetected genetic causes in nearly 20% of patients, including a new and population-specific WDR19 homozygous pathogenic variant. This mutation has not been previously described; it is extremely rare globally but is common among the Druze, which highlights the importance of studying minority populations with high rates of CKD. Our findings provide insights into the genetic basis of end-stage kidney disease in the Israeli Druze, expand the WDR19 phenotypic spectrum, and emphasize the potential value of genetic testing in such populations.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Adulto , Humanos , Grupos Minoritários , Israel/epidemiologia , Marcadores Genéticos , Estudos Transversais , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/diagnóstico , Minorias Desiguais em Saúde e Populações Vulneráveis
3.
Hum Genomics ; 17(1): 30, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978159

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations. METHODS: Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature. RESULTS: The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3. CONCLUSIONS: The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.


Assuntos
Etnicidade , Genômica , Humanos , Etnicidade/genética , Árabes , Testes Genéticos
4.
Pacing Clin Electrophysiol ; 47(4): 503-510, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38375917

RESUMO

INTRODUCTION: Arrhythmogenic cardiomyopathy (AC) is an inherited cardiomyopathy characterized by fibro-fatty replacement of cardiomyocytes, leading to life-threatening ventricular arrhythmia and heart failure. Pathogenic variants of desmoglein2 gene (DSG2) have been reported as genetic etiologies of AC. In contrast, many reported DSG2 variants are benign or variants of uncertain significance. Correct genetic variant classification is crucial for determining the best medical therapy for the patient and family members. METHODS: Pathogenicity of the DSG2 Ser194Leu variant that was identified by whole exome sequencing in a patient, who presented with ventricular tachycardia and was diagnosed with AC, was investigated by electron microscopy and immunohistochemical staining of endomyocardial biopsy sample. RESULTS: Electron microscopy demonstrated a widened gap in the adhering junction and a less well-organized intercalated disk region in the mutated cardiomyocytes compared to the control. Immunohistochemical staining in the proband diagnosed with AC showed reduced expression of desmoglein 2 and connexin 43 and intercalated disc distortion. Reduced expression of DSG2 and Connexin 43 were observed in cellular cytoplasm and gap junctions. Additionally, we detected perinuclear accumulation of DSG2 and Connexin 43 in the proband sample. CONCLUSION: Ser194Leu is a missense pathogenic mutation of DSG2 gene associated with arrhythmogenic left ventricular cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Taquicardia Ventricular , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Cardiomiopatias/complicações , Mutação/genética , Arritmias Cardíacas/complicações , Taquicardia Ventricular/genética , Taquicardia Ventricular/complicações , Miócitos Cardíacos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo
5.
J Med Genet ; 60(3): 233-240, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35710109

RESUMO

BACKGROUND: Monogenic neurodegenerative diseases represent a heterogeneous group of disorders caused by mutations in genes involved in various cellular functions including autophagy, which mediates degradation of cytoplasmic contents by their transport into lysosomes. Abnormal autophagy is associated with hereditary ataxia and spastic paraplegia, amyotrophic lateral sclerosis and frontal dementia, characterised by intracellular accumulation of non-degraded proteins. We investigated the genetic basis of complex HSP in a consanguineous family of Arab-Muslim origin, consistent with autosomal recessive inheritance. METHODS: Exome sequencing was followed by variant filtering and Sanger sequencing for validation and familial segregation. Studies for mRNA and protein expression used real-time PCR and immunoblots. Patients' primary fibroblasts were analysed using electron microscopy, immunofluorescence, western blot analysis and ectopic plasmid expression for its impact on autophagy. RESULTS: We identified a homozygous missense variant in CHMP3 (Chr2:86507484 GRCh38 (NM_016079.4): c.518C>T, p.Thr173Ile), which encodes CHMP3 protein. Segregation analysis validated the presence of the homozygous variant in five affected individuals, while healthy family members were found either heterozygous or wild type for this variant. Primary patient's fibroblasts showed significantly reduced levels of CHMP3. Electron microscopy disclosed accumulation of endosomes, autophagosomes and autolysosomes in patient's fibroblasts, which correlated with higher levels of autophagy markers, p62 and LC3-II. Ectopic expression of wild-type CHMP3 in primary patient fibroblasts led to reduction of the p62 particles accumulation and number of endosomes and autophagosomes compared with control. CONCLUSIONS: Reduced level of CHMP3 is associated with complex spastic paraplegia phenotype, through aberrant autophagy mechanisms.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Proteínas/genética , Paraplegia/genética , Mutação , Autofagia , Linhagem , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
6.
J Med Genet ; 60(11): 1133-1141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460201

RESUMO

BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.

7.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
8.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32693025

RESUMO

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Assuntos
Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
9.
Brain ; 145(6): 1939-1948, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773235

RESUMO

Biallelic pathogenic variants in SZT2 result in a neurodevelopmental disorder with shared features, including early-onset epilepsy, developmental delay, macrocephaly, and corpus callosum abnormalities. SZT2 is as a critical scaffolding protein in the amino acid sensing arm of the mTORC1 signalling pathway. Due to its large size (3432 amino acids), lack of crystal structure, and absence of functional domains, it is difficult to determine the pathogenicity of SZT2 missense and in-frame deletions, but these variants are increasingly detected and reported by clinical genetic testing in individuals with epilepsy. To exemplify this latter point, here we describe a cohort of 12 individuals with biallelic SZT2 variants and phenotypic overlap with SZT2-related neurodevelopmental disorders. However, the majority of individuals carried one or more SZT2 variants of uncertain significance (VUS), highlighting the need for functional characterization to determine, which, if any, of these VUS were pathogenic. Thus, we developed a novel individualized platform to identify SZT2 loss-of-function variants in the context of mTORC1 signalling and reclassify VUS. Using this platform, we identified a recurrent in-frame deletion (SZT2 p.Val1984del) which was determined to be a loss-of-function variant and therefore likely pathogenic. Haplotype analysis revealed that this single in-frame deletion is a founder variant in those of Ashkenazi Jewish ancestry. Moreover, this approach allowed us to tentatively reclassify all of the VUS in our cohort of 12 individuals, identifying five individuals with biallelic pathogenic or likely pathogenic variants. Clinical features of these five individuals consisted of early-onset seizures (median 24 months), focal seizures, developmental delay and macrocephaly similar to previous reports. However, we also show a widening of the phenotypic spectrum, as none of the five individuals had corpus callosum abnormalities, in contrast to previous reports. Overall, we present a rapid assay to resolve VUS in SZT2, identify a founder variant in individuals of Ashkenazi Jewish ancestry, and demonstrate that corpus callosum abnormalities is not a hallmark feature of this condition. Our approach is widely applicable to other mTORopathies including the most common causes of the focal genetic epilepsies, DEPDC5, TSC1/2, MTOR and NPRL2/3.


Assuntos
Epilepsias Parciais , Epilepsia , Megalencefalia , Epilepsia/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Megalencefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas Supressoras de Tumor/genética
10.
Am J Hum Genet ; 104(5): 990-993, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006510

RESUMO

Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.


Assuntos
Holoprosencefalia/genética , Holoprosencefalia/patologia , Mutação de Sentido Incorreto , Prosencéfalo/anormalidades , Fatores de Transcrição/genética , Animais , Criança , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Prosencéfalo/metabolismo
11.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214804

RESUMO

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Convulsões Febris , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento , Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Ubiquitina-Proteína Ligases/genética
12.
J Hum Genet ; 66(11): 1101-1112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33980986

RESUMO

RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.


Assuntos
Disfunção Cognitiva/genética , Metilação de DNA/genética , Proteína p130 Retinoblastoma-Like/genética , Encurtamento do Telômero/genética , Adolescente , Adulto , Alelos , Animais , Criança , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Masculino , Metiltransferases/genética , Camundongos , Microcefalia/complicações , Microcefalia/genética , Microcefalia/fisiopatologia , Atividade Motora/fisiologia , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Telômero/genética , Sequenciamento do Exoma
13.
Am J Med Genet A ; 185(8): 2384-2390, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003604

RESUMO

TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and clinical phenotype have remained incompletely characterized. We present here a comprehensive genetic and phenotypic description of 11 individuals who have been identified to carry de novo variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near a high mobility group box domain, involving this region in these variants' pathogenicity. All affected individuals present with developmental delays in childhood, but most ultimately achieved normal intelligence or had only mild intellectual disability. Myopia was present in approximately half of the individuals, and some individuals also possessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum associated with variation in TCF7L2, which will be important in informing both medical management and future research.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Mutação de Sentido Incorreto , Fases de Leitura Aberta , Fenótipo , Síndrome
14.
Genet Med ; 22(2): 389-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Genótipo , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
16.
Brain ; 142(9): 2631-2643, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334757

RESUMO

Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
17.
Am J Hum Genet ; 99(4): 934-941, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616479

RESUMO

Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2ß, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay, intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogonadism as well as additional findings such as bone fusions. The variants, c.3380G>A (p.Arg1127Gln), c.3443G>T (p.Trp1148Leu), c.3518G>T (p.Arg1173Leu), and c.3008G>A, (p.Gly1003Asp) (GenBank: NM_001273.3), affect evolutionarily highly conserved residues and are predicted to be deleterious. Previous studies in yeast showed the equivalent Arg1127 and Trp1148 residues to be crucial for SNF2 function. Furthermore, mutations in the same positions were reported in malignant tumors, and a de novo missense substitution in an equivalent arginine residue in the C-terminal helicase domain of SMARCA4 is associated with Coffin Siris syndrome. Cell-based studies of the p.Arg1127Gln and p.Arg1173Leu mutants demonstrate normal localization to the nucleus and HDAC1 interaction. Based on these findings, the mutations potentially alter the complex activity but not its formation. This report provides evidence for the role of CHD4 in human development and expands an increasingly recognized group of Mendelian disorders involving chromatin remodeling and modification.


Assuntos
Trifosfato de Adenosina/metabolismo , Autoantígenos/genética , Montagem e Desmontagem da Cromatina/genética , Deficiência Intelectual/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Mutação de Sentido Incorreto/genética , Anormalidades Múltiplas/genética , Adolescente , Animais , Núcleo Celular/metabolismo , Criança , Pré-Escolar , DNA Helicases/genética , Deficiências do Desenvolvimento/genética , Exoma/genética , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/genética , Perda Auditiva/genética , Histona Desacetilase 1/metabolismo , Humanos , Masculino , Megalencefalia/genética , Camundongos , Micrognatismo/genética , Pescoço/anormalidades , Proteínas Nucleares/genética , Síndrome , Fatores de Transcrição/genética
18.
Am J Med Genet C Semin Med Genet ; 178(2): 122-127, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30182446

RESUMO

Holoprosencephaly (HPE) consists of a spectrum of malformations related to incomplete separation of the prosencephalon. There is a wide clinical variability depending on the HPE subtype seen on imaging. Early postnatal lethality is common, however a significant fraction of newborns diagnosed with HPE will survive into childhood and even adulthood. Here we will review the clinical management of HPE during different ages from the prenatal period to adulthood.


Assuntos
Holoprosencefalia/diagnóstico por imagem , Holoprosencefalia/terapia , Adolescente , Encéfalo/anormalidades , Encéfalo/embriologia , Criança , Pré-Escolar , Feminino , Holoprosencefalia/embriologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/etiologia , Masculino , Gravidez , Convulsões/terapia , Adulto Jovem
19.
Genet Med ; 20(1): 14-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28640243

RESUMO

PurposeWith improved medical care, some individuals with holoprosencephaly (HPE) are surviving into adulthood. We investigated the clinical manifestations of adolescents and adults with HPE and explored the underlying molecular causes.MethodsParticipants included 20 subjects 15 years of age and older. Clinical assessments included dysmorphology exams, cognitive testing, swallowing studies, ophthalmic examination, and brain magnetic resonance imaging. Genetic testing included chromosomal microarray, Sanger sequencing for SHH, ZIC2, SIX3, and TGIF, and whole-exome sequencing (WES) of 10 trios.ResultsSemilobar HPE was the most common subtype of HPE, seen in 50% of the participants. Neurodevelopmental disabilities were found to correlate with HPE subtype. Factors associated with long-term survival included HPE subtype not alobar, female gender, and nontypical facial features. Four participants had de novo pathogenic variants in ZIC2. WES analysis of 11 participants did not reveal plausible candidate genes, suggesting complex inheritance in these cases. Indeed, in two probands there was a history of uncontrolled maternal type 1 diabetes.ConclusionIndividuals with various HPE subtypes can survive into adulthood and the neurodevelopmental outcomes are variable. Based on the facial characteristics and molecular evaluations, we suggest that classic genetic causes of HPE may play a smaller role in this cohort.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Adulto , Fácies , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fenótipo , Sistema de Registros , Adulto Jovem
20.
Eur Child Adolesc Psychiatry ; 27(4): 389-399, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29270786

RESUMO

Many European countries are becoming multicultural at a previously unseen rate. The number of immigrants including refugees has considerably increased since 2008, and especially after the beginning of the war in Syria. In 2015, 88,300 unaccompanied minors sought asylum in the Member States of the European Union (EU) and most came from Syria, Afghanistan, Iran, Iraq, Somalia and Eritrea. As a reaction to increased immigration, governments in many countries including Germany, Sweden and Norway implemented more restrictive immigration policy. A requirement for all countries, however, is the protection and welfare provision for all arriving children, regardless of their nationality, ensured by international and national legal frameworks. This paper provides an overview of the post 2015 immigration crisis in key European countries with a special focus on current demographics, refugee children, mental health studies, policies and practical support available for refugees.


Assuntos
Saúde Mental/tendências , Menores de Idade/psicologia , Refugiados/psicologia , Adolescente , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA