Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 72(43): 1162-1167, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883327

RESUMO

Early detection of emerging SARS-CoV-2 variants is critical to guiding rapid risk assessments, providing clear and timely communication messages, and coordinating public health action. CDC identifies and monitors novel SARS-CoV-2 variants through diverse surveillance approaches, including genomic, wastewater, traveler-based, and digital public health surveillance (e.g., global data repositories, news, and social media). The SARS-CoV-2 variant BA.2.86 was first sequenced in Israel and reported on August 13, 2023. The first U.S. COVID-19 case caused by this variant was reported on August 17, 2023, after a patient received testing for SARS-CoV-2 at a health care facility on August 3. In the following month, eight additional U.S. states detected BA.2.86 across various surveillance systems, including specimens from health care settings, wastewater surveillance, and traveler-based genomic surveillance. As of October 23, 2023, sequences have been reported from at least 32 countries. Continued variant tracking and further evidence are needed to evaluate the full public health impact of BA.2.86. Timely genomic sequence submissions to global public databases aided early detection of BA.2.86 despite the decline in the number of specimens being sequenced during the past year. This report describes how multicomponent surveillance and genomic sequencing were used in real time to track the emergence and transmission of the BA.2.86 variant. This surveillance approach provides valuable information regarding implementing and sustaining comprehensive surveillance not only for novel SARS-CoV-2 variants but also for future pathogen threats.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Clin Infect Dis ; 73(7): 1142-1148, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33978150

RESUMO

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast that contaminates healthcare environments causing healthcare-associated outbreaks. The mechanisms facilitating contamination are not established. METHODS: C. auris was quantified in residents' bilateral axillary/inguinal composite skin swabs and environmental samples during a point-prevalence survey at a ventilator-capable skilled-nursing facility (vSNF A) with documented high colonization prevalence. Environmental samples were collected from all doorknobs, windowsills and handrails of each bed in 12 rooms. C. auris concentrations were measured using culture and C. auris-specific quantitative polymerase chain reaction (qPCR) The relationship between C. auris concentrations in residents' swabs and associated environmental samples were evaluated using Kendall's tau-b (τ b) correlation coefficient. RESULTS: C. auris was detected in 70/100 tested environmental samples and 31/57 tested resident skin swabs. The mean C. auris concentration in skin swabs was 1.22 × 105 cells/mL by culture and 1.08 × 106 cells/mL by qPCR. C. auris was detected on all handrails of beds occupied by colonized residents, as well as 10/24 doorknobs and 9/12 windowsills. A positive correlation was identified between the concentrations of C. auris in skin swabs and associated handrail samples based on culture (τ b = 0.54, P = .0004) and qPCR (τ b = 0.66, P = 3.83e-6). Two uncolonized residents resided in beds contaminated with C. auris. CONCLUSIONS: Colonized residents can have high C. auris burdens on their skin, which was positively related with contamination of their surrounding healthcare environment. These findings underscore the importance of hand hygiene, transmission-based precautions, and particularly environmental disinfection in preventing spread in healthcare facilities.


Assuntos
Candida , Instituições de Cuidados Especializados de Enfermagem , Chicago , Controle de Infecções , Ventiladores Mecânicos
3.
Proc Biol Sci ; 287(1931): 20201134, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32693727

RESUMO

Antarctica is estimated to contain as much as a quarter of earth's marine methane, however we have not discovered an active Antarctic methane seep limiting our understanding of the methane cycle. In 2011, an expansive (70 m × 1 m) microbial mat formed at 10 m water depth in the Ross Sea, Antarctica which we identify here to be a high latitude hydrogen sulfide and methane seep. Through 16S rRNA gene analysis on samples collected 1 year and 5 years after the methane seep formed, we identify the taxa involved in the Antarctic methane cycle and quantify the response rate of the microbial community to a novel input of methane. One year after the seep formed, ANaerobic MEthane oxidizing archaea (ANME), the dominant sink of methane globally, were absent. Five years later, ANME were found to make up to 4% of the microbial community, however the dominant member of this group observed (ANME-1) were unexpected considering the cold temperature (-1.8°C) and high sulfate concentrations (greater than 24 mM) present at this site. Additionally, the microbial community had not yet formed a sufficient filter to mitigate the release of methane from the sediment; methane flux from the sediment was still significant at 3.1 mmol CH4 m-2 d-1. We hypothesize that this 5 year time point represents an early successional stage of the microbiota in response to methane input. This study provides the first report of the evolution of a seep system from a non-seep environment, and reveals that the rate of microbial succession may have an unrealized impact on greenhouse gas emission from marine methane reservoirs.


Assuntos
Metano , Regiões Antárticas , Archaea/fisiologia , Temperatura Baixa , Fenômenos Ecológicos e Ambientais , Sedimentos Geológicos , Microbiota , Filogenia , Água do Mar , Análise de Sequência de DNA , Sulfatos
4.
Clin Infect Dis ; 68(1): 15-21, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788045

RESUMO

Background: Candida auris is a multidrug-resistant yeast associated with hospital outbreaks worldwide. During 2015-2016, multiple outbreaks were reported in Colombia. We aimed to understand the extent of contamination in healthcare settings and to characterize the molecular epidemiology of C. auris in Colombia. Methods: We sampled patients, patient contacts, healthcare workers, and the environment in 4 hospitals with recent C. auris outbreaks. Using standardized protocols, people were swabbed at different body sites. Patient and procedure rooms were sectioned into 4 zones and surfaces were swabbed. We performed whole-genome sequencing (WGS) and antifungal susceptibility testing (AFST) on all isolates. Results: Seven of the 17 (41%) people swabbed were found to be colonized. Candida auris was isolated from 37 of 322 (11%) environmental samples. These were collected from a variety of items in all 4 zones. WGS and AFST revealed that although isolates were similar throughout the country, isolates from the northern region were genetically distinct and more resistant to amphotericin B (AmB) than the isolates from central Colombia. Four novel nonsynonymous mutations were found to be significantly associated with AmB resistance. Conclusions: Our results show that extensive C. auris contamination can occur and highlight the importance of adherence to appropriate infection control practices and disinfection strategies. Observed genetic diversity supports healthcare transmission and a recent expansion of C. auris within Colombia with divergent AmB susceptibility.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/classificação , Candida/efeitos dos fármacos , Candidíase/epidemiologia , Candidíase/microbiologia , Farmacorresistência Fúngica , Candida/genética , Candida/isolamento & purificação , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Colômbia/epidemiologia , Microbiologia Ambiental , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem Molecular , Técnicas de Tipagem Micológica , Sequenciamento Completo do Genoma
5.
J Clin Microbiol ; 57(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760535

RESUMO

The emerging yeast Candida auris can be highly drug resistant, causing invasive infections, and large outbreaks. C. auris went from an unknown pathogen a decade ago to being reported in over thirty countries on six continents. C. auris consists of four discrete clades, based on where the first isolates of the clade were reported, South Asian (clade I), East Asian (clade II), African (clade III), and South American (clade IV). These clades have unique genetic and biochemical characteristics that are important to understand and inform the global response to C. auris Clade II has been underrepresented in the literature despite being the first one discovered. In this issue of the Journal of Clinical Microbiology, Y. J. Kwon et al. (J Clin Microbiol 57:e01624-18, 2019, https://doi.org/10.1128/JCM.01624-18) describe the largest collection of clinical isolates from Clade II, which is also the longest-running span of clinical cases, 20 years, from any single region to date. Clade II appears to have a propensity for the ear that is uncharacteristic of the other clades, which typically cause invasive infections and large-scale outbreaks. This study provides new information on an understudied lineage of C. auris and has important implications for future surveillance.


Assuntos
Candida/classificação , Candida/fisiologia , Candidíase/microbiologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/epidemiologia , Farmacorresistência Fúngica Múltipla , Humanos , Testes de Sensibilidade Microbiana , Otite/epidemiologia , Otite/microbiologia
6.
Med Mycol ; 57(5): 636-638, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329075

RESUMO

Candida auris is an emerging, multidrug-resistant yeast that can spread rapidly in healthcare settings. Phenotypic switching has been observed in other Candida species and can potentially interfere with correct identification. The aim of this study is to address misidentification of C. auris by describing alternate phenotypes after broth enrichment and subculturing on CHROMagar Candida. Each isolate displayed different frequencies of phenotypic switching, suggesting a strain to strain variability. Increased knowledge of the multiple phenotypes of C. auris increases the chance of isolating and identifying C. auris by reducing the risk of discarding false negative alternate colony morphologies.

7.
J Clin Microbiol ; 56(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232130

RESUMO

The recent emergence of the multidrug-resistant and pathogenic yeast Candida auris continues to cause public health concern worldwide. C. auris is alarming because it causes health care-associated outbreaks and can establish invasive infections with high mortality rates. Transmission between patients is facilitated by the ability of C. auris to persistently colonize multiple body sites, including the skin, and survive for weeks on surfaces in health care settings. Rapid identification of colonized patients is needed to implement timely infection control measures. Currently, CDC laboratories use an enrichment culture-based approach that can take up to 2 weeks to identify C. auris from composite swabs from the bilateral axillae and groin. A rapid SYBR green quantitative PCR (qPCR) assay that can identify C. auris in a single day was recently described. In this study, we developed the SYBR green qPCR assay further by incorporating a DNA extraction procedure for skin swabs and by including an internal amplification control based on the distinguishable melt curve of a lambda DNA amplicon. The assay was conducted using 103 clinical axilla/groin skin swab samples. Using the enrichment culture-based approach as a gold standard, we determined that the SYBR green C. auris qPCR has a sensitivity of 0.93 and specificity of 0.96. Overall, we found that the SYBR green C. auris qPCR assay can be successfully applied for rapid and accurate detection of C. auris in patient skin swabs, thereby increasing diagnostic options for this emerging pathogen.


Assuntos
Candida/isolamento & purificação , Candidíase/diagnóstico , Técnicas Microbiológicas/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Pele/microbiologia , Candida/genética , Candidíase/microbiologia , DNA Fúngico/genética , Corantes Fluorescentes , Humanos , Sensibilidade e Especificidade , Manejo de Espécimes , Fatores de Tempo
8.
Mycoses ; 61(10): 786-790, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29938838

RESUMO

Candida auris is a multidrug-resistant pathogenic yeast whose recent emergence is of increasing public-health concern. C. auris can colonise multiple body sites, including patients' skin, and survive for weeks in the health care environment, facilitating patient-to-patient transmission and fueling health care-associated outbreaks. Rapid and accurate detection of C. auris colonisation is essential for timely implementation of infection control measures and to prevent transmission. Currently, axilla/groin composite swabs, used to assess colonisation status, are processed using a culture-based method that is sensitive and specific but requires 14 days. This delay limits the opportunity to respond and highlights the need for a faster alternative. The culture-independent T2 Magnetic Resonance (T2MR) system is a rapid diagnostic platform shown to detect target pathogens of interest from unprocessed blood samples in <5 hours. In this study, a new C. auris-specific T2 assay was evaluated for screening of the skin surveillance samples. Inclusivity and limit of detection of the T2 C.  auris assay were assessed with spiked samples in a representative skin flora background. The T2 C. auris assay recognised isolates from each of the 4 known clades of C. auris and consistently detected cells at 5 CFU/mL. Finally, 89 clinical axilla/groin swab samples were processed with the T2 C. auris assay. The culture-based diagnostic assay was used as a gold standard to determine performance statistics including sensitivity (0.89) and specificity (0.98). Overall, the T2 C. auris assay performed well as a rapid diagnostic and could help expedite the detection of C. auris in patient skin swabs.


Assuntos
Candida/isolamento & purificação , Candidíase/diagnóstico , Portador Sadio/diagnóstico , Testes Diagnósticos de Rotina/métodos , Espectroscopia de Ressonância Magnética/métodos , Técnicas Microbiológicas/métodos , Pele/microbiologia , Candida/química , Candidíase/microbiologia , Portador Sadio/microbiologia , Humanos , Programas de Rastreamento/métodos , Sensibilidade e Especificidade , Fatores de Tempo
9.
J Clin Microbiol ; 55(10): 2996-3005, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747370

RESUMO

The emerging multidrug-resistant pathogenic yeast Candida auris represents a serious threat to global health. Unlike most other Candida species, this organism appears to be commonly transmitted within health care facilities and causes health care-associated outbreaks. To better understand the epidemiology of this emerging pathogen, we investigated the ability of C. auris to persist on plastic surfaces common in health care settings compared with that of Candida parapsilosis, a species known to colonize the skin and plastics. Specifically, we compiled comparative and quantitative data essential to understanding the vehicles of spread and the ability of both species to survive and persist on plastic surfaces under controlled conditions (25°C and 57% relative humidity), such as those found in health care settings. When a test suspension of 104 cells was applied and dried on plastic surfaces, C. auris remained viable for at least 14 days and C. parapsilosis for at least 28 days, as measured by CFU. However, survival measured by esterase activity was higher for C. auris than C. parapsilosis throughout the 28-day study. Given the notable length of time Candida species survive and persist outside their host, we developed methods to more effectively culture C. auris from patients and their environment. Using our enrichment protocol, public health laboratories and researchers can now readily isolate C. auris from complex microbial communities (such as patient skin, nasopharynx, and stool) as well as environmental biofilms, in order to better understand and prevent C. auris colonization and transmission.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Candidíase/transmissão , Infecção Hospitalar/microbiologia , Plásticos , Candida/isolamento & purificação , Candida parapsilosis/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana
11.
Clin Microbiol Newsl ; 39(13): 99-103, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29503491

RESUMO

Candida auris is a newly emerging species that was first identified in Asia in 2009 but has rapidly spread across the world. C. auris differs from most other Candida species in that antifungal resistance is the norm rather than the exception, it is a commensal of human skin rather than the human gut, and it can be easily transmitted from person to person in a healthcare setting. This review discusses the emergence of C. auris, global epidemiology, identification, antifungal susceptibility testing, and precautions to be taken when it is identified from a patient specimen.

13.
Sci Total Environ ; 924: 171566, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461979

RESUMO

Wastewater surveillance is a valuable tool that can be used to track infectious diseases in a community. In September 2020, the Centers for Disease Control and Prevention (CDC) established the National Wastewater Surveillance System (NWSS) to coordinate and build the nation's capacity to detect and quantify concentrations of SARS-CoV-2 RNA in U.S. wastewater. This is the first surveillance summary of NWSS, covering September 1, 2020 to December 31, 2022. Through partnerships with state, tribal, local, and territorial health departments, NWSS became a national surveillance platform that can be readily expanded and adapted to meet changing public health needs. Beginning with 209 sampling sites in September 2020, NWSS rapidly expanded to >1500 sites by December 2022, covering ≈47 % of the U.S. population. As of December 2022, >152,000 unique wastewater samples have been collected by NWSS partners, primarily from wastewater treatment plants (WWTPs). WWTPs participating in NWSS tend to be larger than the average U.S. WWTP and serve more populated communities. In December 2022, ≈8 % of the nearly 16,000 U.S. WWTPs were participating in NWSS. NWSS partners used a variety of methods for sampling and testing wastewater samples; however, progress is being made to standardize these methods. In July 2021, NWSS partners started submitting SARS-CoV-2 genome sequencing data to NWSS. In October 2022, NWSS expanded to monkeypox virus testing, with plans to include additional infectious disease targets in the future. Through the rapid implementation and expansion of NWSS, important lessons have been learned. Wastewater surveillance programs should consider both surge and long-term capacities when developing an implementation plan, and early standardization of sampling and testing methods is important to facilitate data comparisons across sites. NWSS has proven to be a flexible and sustainable surveillance system that will continue to be a useful complement to case-based surveillance for guiding public health action.


Assuntos
RNA Viral , Águas Residuárias , Estados Unidos , Vigilância Epidemiológica Baseada em Águas Residuárias , Centers for Disease Control and Prevention, U.S. , Aprendizagem
14.
Proc Natl Acad Sci U S A ; 107(33): 14679-84, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20668244

RESUMO

Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny "picoplanktonic" members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.


Assuntos
Ecossistema , Metagenoma/genética , Metagenômica/métodos , Fitoplâncton/genética , Sequência de Aminoácidos , Biomassa , Eucariotos/classificação , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Evolução Molecular , Florida , Geografia , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Estações do Ano , Homologia de Sequência de Aminoácidos , Temperatura
15.
Environ Microbiol ; 14(1): 162-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21914098

RESUMO

Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton.


Assuntos
Cianobactérias/virologia , Genes Virais , Metagenoma , Proteínas de Transporte de Fosfato/genética , Phycodnaviridae/genética , Fitoplâncton/virologia , Oceano Atlântico , Genoma Viral , Dados de Sequência Molecular , Oceano Pacífico , Fosfatos/metabolismo , Filogenia
17.
Methods Mol Biol ; 2517: 215-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674957

RESUMO

Candida auris is an urgent public health threat characterized by high drug-resistant rates and rapid spread in healthcare settings worldwide. As part of the C. auris response, molecular surveillance has helped public health officials track the global spread and investigate local outbreaks. Here, we describe whole-genome sequencing analysis methods used for routine C. auris molecular surveillance in the United States; methods include reference selection, reference preparation, quality assessment and control of sequencing reads, read alignment, and single-nucleotide polymorphism calling and filtration. We also describe the newly developed pipeline MycoSNP, a portable workflow for performing whole-genome sequencing analysis of fungal organisms including C. auris.


Assuntos
Candida auris , Candidíase , Antifúngicos/uso terapêutico , Candida auris/genética , Candidíase/microbiologia , Humanos , Estados Unidos , Sequenciamento Completo do Genoma , Fluxo de Trabalho
18.
ACS ES T Water ; 2(11): 2201-2210, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552727

RESUMO

There have been over 507 million cases of COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in 6 million deaths globally. Wastewater surveillance has emerged as a valuable tool in understanding SARS-CoV-2 burden in communities. The National Wastewater Surveillance System (NWSS) partnered with the United States Geological Survey (USGS) to implement a high-frequency sampling program. This report describes basic surveillance and sampling statistics as well as a comparison of SARS-CoV-2 trends between high-frequency sampling 3-5 times per week, referred to as USGS samples, and routine sampling 1-2 times per week, referred to as NWSS samples. USGS samples provided a more nuanced impression of the changes in wastewater trends, which could be important in emergency response situations. Despite the rapid implementation time frame, USGS samples had similar data quality and testing turnaround times as NWSS samples. Ensuring there is a reliable sample collection and testing plan before an emergency arises will aid in the rapid implementation of a high-frequency sampling approach. High-frequency sampling requires a constant flow of information and supplies throughout sample collection, testing, analysis, and data sharing. High-frequency sampling may be a useful approach for increased resolution of disease trends in emergency response.

19.
J Fungi (Basel) ; 7(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809682

RESUMO

Candida auris is a multidrug-resistant pathogen that represents a serious public health threat due to its rapid global emergence, increasing incidence of healthcare-associated outbreaks, and high rates of antifungal resistance. Whole-genome sequencing and genomic surveillance have the potential to bolster C. auris surveillance networks moving forward. Laboratories conducting genomic surveillance need to be able to compare analyses from various national and international surveillance partners to ensure that results are mutually trusted and understood. Therefore, we established an empirical outbreak benchmark dataset consisting of 23 C. auris genomes to help validate comparisons of genomic analyses and facilitate communication among surveillance networks. Our outbreak benchmark dataset represents a polyclonal phylogeny with three subclades. The genomes in this dataset are from well-vetted studies that are supported by multiple lines of evidence, which demonstrate that the whole-genome sequencing data, phylogenetic tree, and epidemiological data are all in agreement. This C. auris benchmark set allows for standardized comparisons of phylogenomic pipelines, ultimately promoting effective C. auris collaborations.

20.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33769478

RESUMO

Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.


Assuntos
Candida auris/genética , Cromossomos , Candida/genética , Aberrações Cromossômicas/efeitos dos fármacos , Rearranjo Gênico , Genoma Fúngico , Genômica/métodos , Cariótipo , Filogenia , Telômero/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA