Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 44(1): 55, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment and cognitive dysfunctions. It has been shown that hypoglycemia can adversely affect AD neuropathology. It is well-known that chronic hyperglycemia in type 2 diabetes (T2D) is regarded as a potential risk factor for the development and progression of AD. However, the effect of recurrent hypoglycemia on the pathogenesis of AD was not deeply discussed, and how recurrent hypoglycemia affects AD at cellular and molecular levels was not intensely interpreted by the previous studies. The underlying mechanisms for hypoglycaemia-induced AD are diverse such as endothelial dysfunction, thrombosis, and neuronal injury that causing tau protein hyperphosphorylation and the accumulation of amyloid beta (Aß) in the brain neurons. Of note, the glucagon hormone, which controls blood glucose, can also regulate the cognitive functions. Glucagon increases blood glucose by antagonizing the metabolic effect of insulin. Therefore, glucagon, through attenuation of hypoglycemia, may prevent AD neuropathology. Glucagon/GLP-1 has been shown to promote synaptogenesis, hippocampal synaptic plasticity, and learning and memory, while attenuating amyloid and tau pathologies. Therefore, activation of glucagon receptors in the brain may reduce AD neuropathology. A recent glucagon receptor agonist dasiglucagon which used in the management of hypoglycemia may be effective in preventing hypoglycemia and AD neuropathology. This review aims to discuss the potential role of dasiglucagon in treating hypoglycemia in AD, and how this drug reduce AD neuropathology.


Assuntos
Doença de Alzheimer , Hipoglicemia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipoglicemia/metabolismo , Hipoglicemia/complicações , Animais , Fatores de Risco
2.
J Biochem Mol Toxicol ; 38(1): e23599, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050455

RESUMO

Lamotrigine (LTG) is an antiepileptic drug with possible adverse effects on the female reproductive system. Curcumin was declared to improve ovarian performance. Therefore, this study aimed to clarify ovulatory dysfunction (OD) associated with LTG and the role of curcumin in ameliorating this dysfunction. Adult female Wister albino rats were assigned into four groups: negative control (received saline), positive control (received curcumin only), LTG, and LTG with curcumin groups. Drugs were administered for 90 days. The hormonal profile, including testosterone, estrogen, progesterone, luteinizing hormone, and follicle-stimulating hormone, in addition to the lipid profile and glycemic analysis, were tested. Oxidative stress biomarkers analysis in the ovaries and uterus and peroxisome proliferator-activated receptor-γ (PPAR-γ) gene expression were also included. Histopathological examination of ovarian and uterine tissues and immunohistochemical studies were also performed. Curcumin could improve the OD related to chronic LTG intake. That was proved by the normalization of the hormonal profile, glycemic control, lipidemic status, oxidative stress markers, and PPAR-γ gene expression. The histopathological and immunohistochemical examination of ovarian and uterine tissues revealed an improvement after curcumin administration. The results describe an obvious deterioration in ovarian performance with LTG through the effect on lipidemic status, PPAR-γ gene, and creating an oxidative stress condition in the ovaries of chronic users, with a prominent improvement with curcumin addition to the treatment protocol.


Assuntos
Curcumina , Ovário , Ratos , Feminino , Animais , Ovário/metabolismo , Curcumina/farmacologia , Lamotrigina/farmacologia , Anticonvulsivantes/farmacologia , Espécies Reativas de Oxigênio , PPAR gama/metabolismo , Ratos Wistar , Útero/metabolismo
3.
Inflammopharmacology ; 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39342545

RESUMO

BACKGROUND: The current study aimed to evaluate the anti-inflammatory, anti-oxidant, and pronounced gastro-protective activities of ß- Citronellol using in vitro, in vivo assays and in silico approaches. METHODS: In vitro assays, denaturation of bovine serum albumin, egg protein, and human Red Blood Cells (RBCs) membrane stabilization were performed, using Piroxicam as standard. For in vivo assessment, Histamine (0.1 ml from 1% w/v) and Formaldehyde (0.1 ml from 2% v/v) were used to mediate inflammation. In silico molecular docking and network pharmacology were employed to probe the possible target genes mediating gastroprotective effect of ß-Citronellol at 25, 50, and 100 mg/kg, using indomethacin-induced (25 mg/kg i.p) gastric ulcer in rats. Moreover, Gastric tissues were evaluated for morphological, histopathological, and bio-chemical analysis of PGE2, COX-I, COX-II, 5-LOX, eNOS, ICAM-1, oxygen-free radical scavengers (SOD, CAT), and oxidative stress marker (MDA). RESULTS: ß-Citronellol prevented denaturation of proteins and RBCs membrane stabilization with maximum effect observed at 6,400 µg/mL. Citronellol decreased rat's paw edema. Network pharmacology and docking studies revealed gastro-protective potential of Citronellol possibly mediated through arachidonic acid pathways by targeting COX-I, COX-II, PGE2, and 5-LOX. Citronellol reduced the ulcer indices, and histopathological changes. Further, ß-Citronellol (50 and 100 mg/kg) increased gastric PGE2, COX-1, and eNOS; while suppressing COX-2, 5-LOX and ICAM-1. Citronellol markedly enhanced the oxidative balance in isolated rat stomach tissues. CONCLUSIONS: The anti-inflammatory, anti-oxidant, and gastro-protective effects of ß-Citronellol against indomethacin-induced gastric ulcer model in rats through mediating COX-I, COX-II, PGE2, 5-LOX, eNOS, and ICAM-1 inflammatory markers.

4.
Toxicol Mech Methods ; : 1-16, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245987

RESUMO

The study aimed to assess the toxic effect of cadmium (Cd) on the exocrine and endocrine functions of pancreas, the changes in pancreatic tissue after Cd withdrawal, and the protective effects of vitamin C (VC) and Nigella sativa (NS) against Cd-induced damage. Rats were assigned to: control, Cd-treated (0.5 mg/kg/d intraperitoneal [IP] injection), VC and Cd-treated (receiving 100 mg/kg/d VC orally and Cd concomitantly), NS and Cd-treated (receiving 20 mg/kg/d NS and Cd, simultaneously), and Cd withdrawal (receiving Cd for 30 d then living free for recovery for other 30 d). Blood samples were collected and post-sacrifice pancreatic specimens were processed for light and electron microscope study. Quantitative analyses of pancreatic collagen area%, pancreatic islet parameters, ß cell density, and insulin immunoexpression were done. Fasting blood glucose was significantly increased in Cd-treated and Cd-withdrawal groups, while co-treatment with VC and NS caused significant reductions (p < 0.05). Cd-induced extensive degenerative changes in pancreatic acini and islets at light and ultrastructure levels. Obvious fibrosis and congestion of blood vessels were noticed. Significant reductions in pancreatic islet number, volume, and surface area and diminished beta cell count and insulin immunoexpression were observed. After withdrawal of Cd, the whole pancreatic tissue still showed a serious impact. Concomitant treatment with VC or NS obviously reduced these degenerative changes and significantly improved pancreatic islet parameters and insulin immunoexpression. VC showed a better amendment than NS, but this difference was statistically insignificant. Therefore, VC and NS could be used as prophylactic agents that lessen Cd consequences on the pancreas.

5.
J Cell Mol Med ; 27(12): 1735-1744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37257043

RESUMO

The present study aimed to identify the possible protective effect of diacerein (DIA) on gentamicin (GNT)-induced parotid toxicity in rats. DIA was administered in the presence and absence of GNT. Thirty-two Wistar adult male rats were randomly arranged into four groups: control, DIA (50 mg/kg/day), GNT (100 mg/kg) and GNT+DIA groups for 8 days. Parotid oxidative stress parameters, besides inflammatory and apoptotic biomarkers, were evaluated. Salivary flow rate, transient receptor potential canonical 1 (TRCP1), and C/EBP homologous protein (CHOP) in parotid tissue were measured. A parotid histopathological examination and an interleukin-1 beta (IL-1ß) immunohistochemical study were also performed. GNT significantly increased parotid oxidative stress, inflammatory, apoptotic and CHOP biomarkers with decreased salivary flow rate and TRCP1 level. A histopathological picture of parotid damage and high IL-1ß immunoexpression were detected. DIA significantly normalized the distributed oxidative, inflammatory and apoptotic indicators, CHOP and TRCP1, with a prompt improvement in the histopathological picture and a decrease in IL-1ß immunoexpression. These results reported that DIA protects against GNT-induced parotid toxicity via modulation of TLR4/NF-κB/IL-1ß and TRPC1/CHOP signalling pathways.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Gentamicinas/efeitos adversos , Ratos Wistar , Biomarcadores
6.
Mol Cell Biochem ; 478(10): 2271-2279, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36652045

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection leads to hyper-inflammation and amplified immune response in severe cases that may progress to cytokine storm and multi-organ injuries like acute respiratory distress syndrome and acute lung injury. In addition to pro-inflammatory cytokines, different mediators are involved in SARS-CoV-2 pathogenesis and infection, such as sphingosine-1-phosphate (S1P). S1P is a bioactive lipid found at a high level in plasma, and it is synthesized from sphingomyelin by the action of sphingosine kinase. It is involved in inflammation, immunity, angiogenesis, vascular permeability, and lymphocyte trafficking through G-protein coupled S1P receptors. Reduction of the circulating S1P level correlates with COVID-19 severity. S1P binding to sphingosine-1-phosphate receptor 1 (S1PR1) elicits endothelial protection and anti-inflammatory effects during SARS-CoV-2 infection, by limiting excessive INF-α response and hindering mitogen-activated protein kinase and nuclear factor kappa B action. However, binding to S1PR2 opposes the effect of S1PR1 with vascular inflammation, endothelial permeability, and dysfunction as the concomitant outcome. This binding also promotes nod-like receptor pyrin 3 (NLRP3) inflammasome activation, causing liver inflammation and fibrogenesis. Thus, higher expression of macrophage S1PR2 contributes to the activation of the NLRP3 inflammasome and the release of pro-inflammatory cytokines. In conclusion, S1PR1 agonists and S1PR2 antagonists might effectively manage COVID-19 and its severe effects. Further studies are recommended to elucidate the potential conflict in the effects of S1P in COVID-19.


Assuntos
COVID-19 , Humanos , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , SARS-CoV-2 , Esfingosina , Citocinas/metabolismo , Lisofosfolipídeos/metabolismo , Inflamação
7.
Ecotoxicol Environ Saf ; 256: 114847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023646

RESUMO

Hydrogen cyanamide (Dormex) is a plant growth regulator that is classified as a highly toxic poison. There are no definite investigations to help in its diagnosis and follow-up. This study aimed to investigate the role of hypoxia-inducible factor-1α (HIF-1α) in the diagnosis, prediction, and follow-up of Dormex-intoxicated patients. Sixty subjects were equally divided into two groups: group A, the control group, and group B, the Dormex group. Clinical and laboratory evaluations, including arterial blood gases (ABG), prothrombin concentration (PC), the international normalized ratio (INR), a complete blood count (CBC), and HIF-1α, were done on admission. CBC and HIF-1α were repeated for group B 24 and 48 h after admission to track abnormalities. Group B also had brain computed tomography (CT). Patients with abnormal CT scans were referred for brain magnetic resonance imaging (MRI). Significant differences in levels of HB, WBCs, and platelets were also detected in group B up to 48 h after admission, as white blood cells (WBCs) rose with time and hemoglobin (HB) and platelets diminished. The results described a highly significant difference in HIF-1α between the groups, and it depended on the clinical condition; therefore, it can be used in the prediction and follow-up of patients up to 24 h after admission.


Assuntos
Cianamida , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Hipóxia
8.
Immunopharmacol Immunotoxicol ; 45(5): 607-615, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37078892

RESUMO

BACKGROUND: Methotrexate (MTX) is a commonly used chemotherapeutic agent; however, its clinical use is challenged by various types of injuries, including hepatotoxic side effects. Therefore, finding new protective drugs against MTX-induced toxicities is a critical need. Moreover, the different mechanisms mediating such effects are still not clear. The current study aimed to evaluate the possible ameliorative action of nicorandil (NIC) in MTX-induced hepatotoxicity and examine the roles of the ATP-sensitive potassium channel (KATP), endothelial nitric oxide synthase (eNOS), and P-glycoprotein (P-gp). MATERIALS AND METHODS: Thirty-six male Wistar albino rats were used. NIC (3 mg/kg/day) was given orally for 2 weeks, and hepatotoxicity was induced by a single intraperitoneal injection of MTX (20 mg/kg) on the 11th day of the experiment. We confirmed the role of KATP by co-administering glimepiride (GP) (10 mg/kg/day) 30 min before NIC. The measured serum biomarkers were [alanine transaminase (ALT) and aspartate transaminase (AST)], total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NOx), tumor necrosis factor-alpha (TNFα), superoxide dismutase (SOD), and P-gp. Histopathology, eNOS, and caspase-3 immunoexpression were evaluated. RESULTS: The MTX group displayed hepatotoxicity in the form of elevations of ALT, AST, MDA, NOx, and caspase-3 immunoexpression. Furthermore, the histopathological examination showed marked liver injury. TAC, SOD, P-gp, and eNOS immunoexpression showed significant inhibition. In the protective group, all parameters improved (P value < 0.05). CONCLUSION: NIC has an ameliorative action against MTX-induced hepatotoxicity, most probably via its antioxidant, anti-inflammatory, and anti-apoptotic functions together with the modulation of the KATP channel, eNOS, and P-glycoprotein.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Metotrexato/toxicidade , Ratos Wistar , Nicorandil/farmacologia , Caspase 3/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Estresse Oxidativo , Óxido Nítrico Sintase Tipo III/metabolismo , Canais KATP/metabolismo , Canais KATP/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Superóxido Dismutase/metabolismo , Trifosfato de Adenosina , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
9.
Virol J ; 19(1): 158, 2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210445

RESUMO

Most COVID-19 patients recovered with low mortality; however, some patients experienced long-term symptoms described as "long-COVID" or "Post-COVID syndrome" (PCS). Patients may have persisting symptoms for weeks after acute SARS-CoV-2 infection, including dyspnea, fatigue, myalgia, insomnia, cognitive and olfactory disorders. These symptoms may last for months in some patients. PCS may progress in association with the development of mast cell activation syndrome (MCAS), which is a distinct kind of mast cell activation disorder, characterized by hyper-activation of mast cells with inappropriate and excessive release of chemical mediators. COVID-19 survivors, mainly women, and patients with persistent severe fatigue for 10 weeks after recovery with a history of neuropsychiatric disorders are more prone to develop PCS. High D-dimer levels and blood urea nitrogen were observed to be risk factors associated with pulmonary dysfunction in COVID-19 survivors 3 months post-hospital discharge with the development of PCS. PCS has systemic manifestations that resolve with time with no further complications. However, the final outcomes of PCS are chiefly unknown. Persistence of inflammatory reactions, autoimmune mimicry, and reactivation of pathogens together with host microbiome alterations may contribute to the development of PCS. The deregulated release of inflammatory mediators in MCAS produces extraordinary symptoms in patients with PCS. The development of MCAS during the course of SARS-CoV-2 infection is correlated to COVID-19 severity and the development of PCS. Therefore, MCAS is treated by antihistamines, inhibition of synthesis of mediators, inhibition of mediator release, and inhibition of degranulation of mast cells.


Assuntos
COVID-19 , Mastocitose , COVID-19/complicações , Fadiga , Feminino , Antagonistas dos Receptores Histamínicos , Humanos , Mediadores da Inflamação , Mastocitose/diagnóstico , SARS-CoV-2
10.
J Biochem Mol Toxicol ; 36(10): e23147, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35702939

RESUMO

The current study aimed to investigate the potential ameliorative role of Rivastigmine (RIVA), the anti-Alzheimer drug, against the gastric mucosal injury caused by indomethacin (IND). The rats were divided into four groups: group I was given a vehicle as a control, group II was given RIVA (0.3 mg/kg) once daily intraperitoneal (ip) for 2 weeks, group III was given a single IP dose of 30 mg/kg IND, and group IV was given RIVA ip 2 weeks before the administration of IND. The gastric mucosal injury was detected by the estimation of ulcer index, gastric acidity, pepsin, and mucin concentrations. Malondialdehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH), total nitrite/nitrate (NOx), and the expression of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), nuclear factor kappa B (NF-κB), Hemoxygenase 1 (HO-1), and caspase-3 were all measured in gastric tissue. In addition, histological assessment and proliferating cell nuclear antigen (PCNA) immuno-expression were studied. Gastric mucosal injury induced by IND was indicated by both biochemical and histopathological assessments. RIVA Pretreatment reduced ulcer index, MDA, TNF-α, IL-6, NF-κB, and caspase-3 and increased SOD, GSH, NOx, and HO-1. RIVA improved the suppressed nuclear immunoreaction for PCNA observed with IND. The current findings provide novel evidence that RIVA possesses a prophylactic action against IND-induced gastric mucosal damage in rats. Despite being a cholinergic drug that is associated with increased pepsin and stomach acidity, RIVA protected against IND-induced gastric mucosal injury via activating α7nAChR and inhibiting oxidative stress and apoptosis.


Assuntos
Indometacina , Rivastigmina , Úlcera Gástrica , Animais , Apoptose , Caspase 3/metabolismo , Colinérgicos/farmacologia , Glutationa/metabolismo , Indometacina/toxicidade , Interleucina-6/metabolismo , Malondialdeído/metabolismo , Mucinas/metabolismo , NF-kappa B/metabolismo , Nitratos , Nitritos/metabolismo , Estresse Oxidativo , Pepsina A , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Rivastigmina/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
11.
Immunopharmacol Immunotoxicol ; 44(1): 35-46, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34766527

RESUMO

BACKGROUND: Methotrexate (MTX), an anticancer drug, has been linked to multiple organ toxicity. The drug-induced acute toxic symptoms can negatively affect the patient's commitment to the course of treatment. MATERIALS AND METHODS: This study aimed to investigate the mitigating action of agomelatine (Ago) against MTX-induced lung and intestinal toxicity. Forty eight male Wister rats were randomized into six experimental groups: Group 1: Control; Groups 2 and 3: received Ago L&H (20/40 mg/kg, respectively by gavage); Group 4: received MTX 10 mg/kg/day, i.p. on days 7-9; Group 5: received Ago L (20 mg/kg) + MTX; Group 6: received Ago H (40 mg/kg) +MTX. The duration of the study was 10 days. Lung/intestine oxidative markers were measured. Lung/intestinal tissues IL-6, STAT3, and HO-1 levels were evaluated by ELISA. Besides, lung/intestinal tissues were examined for Histological changes, collagen fibers detection using Massonꞌs trichome stain, and immunohistochemical study using HSP70 antibody. RESULTS: MDA, NOx, IL-6, and STAT3 levels were significantly higher in the MTX group's lungs and intestines, indicating lung and intestinal toxicity. There were substantial decreases in GSH, SOD tissue levels, and HSP 70 immunoexpression, as well as histological changes suggesting significant lung and intestinal injury. All of the above parameters improved significantly by using Ago. CONCLUSION: By reducing oxidative stress, inflammatory processes, and modulating the IL-6/STAT3 pathway, Ago has potent ameliorative effects against MTX-induced lung/intestinal toxicities.


Assuntos
Interleucina-6 , Metotrexato , Animais , Masculino , Ratos , Acetamidas , Intestinos/patologia , Pulmão , Metotrexato/toxicidade , Ratos Wistar
12.
Immunopharmacol Immunotoxicol ; 44(4): 613-620, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506611

RESUMO

BACKGROUND: The increased use of indomethacin (IND) is associated with gastrointestinal injury. This research aims to investigate the effects of a beta-blocker, carvedilol (CAR) on a rat model of IND-induced acute intestinal damage and clarify the probable underlying protective mechanisms. MATERIALS AND METHODS: Twenty-four male Wistar rats were divided into four groups. Control group: given vehicles; CAR-treated group: given 10 mg/kg/day CAR PO daily by gastric gavage for 10 consecutive days; IND-treated group: given a single Sc dose of 10 mg/kg IND at the end of the ninth day of the experiment; combined CAR/IND-treated group: given both IND and CAR. RESULTS: In the rats that received IND, severe intestinal histopathological changes together with oxidative and nitrosative intestinal stress were present biochemically and immunohistochemically. Obvious inflammatory and tissue damage were represented by the significant intestinal increases in TNF-α, COX-2, and caspase-3 together with the elevated expression of VCAM-1 adhesion molecules. Intestinal gene expression of NF-kB and COX-2 was also increased. Pretreatment with CAR significantly reversed the IND-induced intestinal toxic manifestations. CONCLUSION: CAR has beneficial intestinal protective effects. Its ameliorative action is conferred through its antioxidant, antinitrosative, anti-inflammatory, and antiapoptotic properties.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Animais , Carvedilol/farmacologia , Ciclo-Oxigenase 2/metabolismo , Indometacina/farmacologia , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209172

RESUMO

Pantoprazole has an antioxidant function against reactive oxygen species (ROS). Vincamine, a herbal candidate, is an indole alkaloid of clinical use against brain sclerosis. The aim of the present experiment is to evaluate, on a molecular level for the first time, the value of vincamine in addition to pantoprazole in treating experimentally induced renal ischemia/reperfusion injury (IRI). One-hundred-and-twenty-eight healthy male Wistar albino rats were included. Serum creatinine, blood urea nitrogen, and malondialdehyde levels were assessed. ELISA was used to estimate the pro-inflammatory cytokines. The expression of Bcl-2 and Bax genes was assessed by quantitative real-time PCR. ERK1/2, JNK1/2, p38, cleaved caspase-3, and NF-κB proteins expressions were estimated using western blot assay. The kidneys were also histopathologically studied. The IRI resulted in impaired cellular functions with increased creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, and IL-1ß serum levels, and up-regulated NF-ĸB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it down-regulated the expression of the Bcl-2 gene and upregulated the Bax gene. The treatment with vincamine, in addition to pantoprazole multiple doses, significantly alleviated the biochemical and histopathological changes more than pantoprazole or vincamine alone, whether the dose is single or multiple, declaring their synergistic effect. In conclusion, vincamine with pantoprazole multiple doses mitigated the renal IRI through the inhibition of apoptosis, attenuation of the extracellular signaling pathways through proinflammatory cytokines' levels, and suppression of the MAPK (ERK1/2, JNK, p38)-NF-κB intracellular signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pantoprazol/farmacologia , Traumatismo por Reperfusão/metabolismo , Vincamina/farmacologia , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Masculino , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia
14.
Int J Legal Med ; 135(1): 269-280, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33237458

RESUMO

Recent biochemical, metabolic, and molecular profiles of various body fluids showed more accurate correlation to the postmortem interval than the traditional physical examination. Our study aimed to evaluate time passed since death in relation to oxidative stress markers, HMGB1 genetic expression, histopathological examination, and BCL2 immunohistochemical analysis in major organs (heart, kidney, and testis). Forty-two adult male rats were included and randomly divided into seven equal groups. After sacrification, the rodents were kept at room temperature and major organs were obtained at 0, 12, 24, 48, 72, 96, and 120 h. Malonaldehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) tissue levels, High mobility group box 1 protein (HMGB1) gene expression, histopathological, and B cell lymphoma 2 (BCL2) immunohistochemical expressions were analyzed. Postmortem interval was correlated to different tissue levels of MDA, SOD, and GSH. HMGB1 showed enhanced postmortem gene expression with a peak at 48 h after death. Obvious time-dependent histopathological changes were observed in all the examined organs. Dilated spaces, extravasation, and fragmentation scores in heart specimens were higher at 96 and 120 h compared with the other groups. Renal changes in the form of shrunken glomeruli, loss of tubular epithelium, and hyalinization and testicular findings in the form of epithelial detachment, vacuolation, and loss of sperms started at 72 h postmortem. BCL2 expression began to decrease 24 h and became negative at 96 h after death. In conclusion, HMGB1 gene expression can be used for estimation of time passed since death as it shows time-dependent changes in the form of a progressive increase with a peak at 48 h then it begins to decline. Oxidants and antioxidants are correlated to PMI until 120 h after death. Histopathological changes in the heart, kidney, and testis are also time-dependent until the 5th day after death. BCL2 immunohistochemical expression begins to decline 24 h until 96 h after death when it becomes negative.


Assuntos
Rim , Miocárdio , Mudanças Depois da Morte , Testículo , Animais , Biomarcadores/metabolismo , Patologia Legal , Glutationa/metabolismo , Proteína HMGB1/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Malondialdeído/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Testículo/patologia
15.
BMC Pregnancy Childbirth ; 21(1): 535, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325652

RESUMO

BACKGROUND: Domestic violence is a common problem that is related to many serious short-term and long-term health hazards around the world. METHODS: During obtaining the medical history from the participants, the questions used to assess the abuse were derived from the widely used Abuse Assessment Screen (AAS). Potential risk factors including a variety of socio-demographic and reproductive health-relation indicators were assessed. The influence of violence on the pregnancy outcome was determined by the continuous follow-up till giving birth. RESULTS: 513 pregnant women were included. The prevalence of violence among them was 50.8%. The prevalence of physical, sexual, verbal, and emotional abuse was 30.2, 20, 41.7, and 45.4% respectively. Exposure to violence during pregnancy had significant effects on the women and their pregnancy outcome in the form of development of vaginal infection (P-value =0.036), vaginal bleeding (P-value = 0.008), preterm labour (P-value = 0.003), premature rupture of membrane (P-value = 0.001). CONCLUSION: Violence against pregnant women in Minia Governorate, Egypt is common especially emotional violence and it has many adverse effects on the women and their pregnancy outcome. One of the most important risk factors is the fear of the husband which makes violence a continuous vicious circle.


Assuntos
Violência Doméstica , Exposição à Violência , Complicações na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , Gestantes , Adolescente , Adulto , Estudos Transversais , Egito/epidemiologia , Feminino , Humanos , Gravidez , Prevalência , Fatores de Risco , Maus-Tratos Conjugais/diagnóstico , Adulto Jovem
16.
Endocrinol Diabetes Metab ; 7(5): e486, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39086121

RESUMO

BACKGROUND: The response of patients with Type 2 diabetes mellitus (T2DM) to metformin may be a variation because of genetic differences in solute carrier (SLC) transporter proteins and other effect factors, which have an important effect on how metformin is processed in the body and its efficiency for glycaemic control. AIM: This study was conducted to investigate the impact of certain genetic variants of the organic cation transporter genes OCT3 (SLC22A3 rs12194182 and rs8187722) and MATE2 (SLC47A2 rs12943590) and their association with glycaemic parameters in patients with T2DM who respond poorly to metformin. PATIENTS AND METHODS: This cross-sectional study involved 150 Iraqi cases with T2DM who were prescribed a daily dose of (1000 mg/day) metformin for a minimum of 3 months. Various parameters included are as follows: demographic data, glycaemic parameters and three SNPs: rs12943590 variant of SLC47A2, rs12194182 and rs8187722 variant of SLC22A3 using the standard PCR-sequencing technique. RESULTS: Thirty-nine patients (26.17%) were responders, whereas 111 patients (73.82%) could not respond to metformin treatment. Upon analysing the genotypes of the rs12943590 variants of SLC47A2, rs12194182 and rs8187722 SNPs of SLC22A3, the present findings revealed a nonsignificant association of genetic variations in all SNPs with metformin response. SLC47A2 (rs12943590) showed nonsignificant associations of the GG, AA and AG genotyping; SLC22A3 (rs12194182) showed nonsignificant associations of the TT, TC and CC genotyping; and SLC22A3 (rs8187722) showed nonsignificant associations of the AA, CC and AC genotyping between two groups. CONCLUSION: Variations in genes SLC22A3 and SLC47A2 did not have a significant role in the response of patients with T2DM to metformin (1000 mg/day).


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Metformina , Proteínas de Transporte de Cátions Orgânicos , Polimorfismo de Nucleotídeo Único , Humanos , Metformina/administração & dosagem , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Adulto , Idoso , Genótipo , Glicemia
17.
Int Immunopharmacol ; 114: 109492, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459920

RESUMO

The current experiment aimed to identify the possible protective role of rivastigmine (RIVA) in gentamicin (GNT)-induced acute kidney injury (AKI) in rats. RIVA was administered in the presence and absence of GNT. Kidney function markers and serum and renal GNT concentrations were measured. Renal oxidative stress parameters as well as inflammatory and apoptotic biomarkers were evaluated. Renal histopathological assessment and nuclear factor kappa-B (NF-κB) immunohistochemical study were performed. GNT administration increased serum creatinine, urea, and cystatin C concentrations. RIVA ameliorated these changes via mitigating GNT-induced increases of renal oxidative stress, inflammation, and apoptotic parameters. RIVA showed a prompt improvement in the histopathological renal damage and a decrease in NF-κB immunoexpression. In conclusion, RIVA protective effects against GNT-induced AKI are mediated by decreasing GNT concentration in renal tissue and other effects like antioxidant and antiapoptotic effects possibly through its cholinergic anti-inflammatory action.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ratos , Animais , Gentamicinas/toxicidade , Rivastigmina/uso terapêutico , Rivastigmina/metabolismo , NF-kappa B/metabolismo , Rim/patologia , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo
18.
Hum Exp Toxicol ; 42: 9603271231151376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36625353

RESUMO

The widespread use of acetaminophen (APAP) in children as an over-the-counter treatment can cause acute liver failure through accidental overdose or ingestion. Therefore, the current research sought to investigate the function of hemin in mitigating the acute hepatotoxic effect of APAP in rat offspring. Thirty-two rats were assigned into four groups: control, hemin, APAP, and hemin/APAP groups. Liver enzymes were measured in serum along with oxidative stress indicators, tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1ß), total nitrites (NOx), and caspase 3 in liver. Immunoblotting of heme oxygenase-1 (HO-1), interleukin-6 (IL-6), Janus kinase 2 (Jak2), and signal transducer and activator of transcription 3 (STAT3) was carried out. The Bax/Bcl2 mRNA expression ratio was determined. A histological study and an immunohistochemical study of phosphorylated STAT3 were also done. Hemin reduced liver enzymes, MDA, TNF-α, NOx, caspase 3, IL-1ß, p-STAT3 expression, p-Jak2 expression, IL-6 expression, and Bax/Bcl2 mRNA expression ratio. In contrast, hemin increased GSH, TAC, and the expression of HO-1, improving the histopathological picture of liver tissue. Thus, hemin could ameliorate APAP-induced hepatic toxicity in rat offspring through anti-oxidant, anti-apoptotic, and anti-inflammatory actions with a possible role for the IL-6/HO-1/Jak2/STAT3 pathway.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Acetaminofen/toxicidade , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Animais Recém-Nascidos , Caspase 3/genética , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Hemina/farmacologia , Proteína X Associada a bcl-2/metabolismo , Fígado , Transdução de Sinais , RNA Mensageiro , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia
19.
Int J Immunopathol Pharmacol ; 37: 3946320231222804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112159

RESUMO

Acute lung injury (ALI) that develops as a result of AP can progress to acute respiratory distress syndrome. Some hypotheses are proposed to explain the pathophysiology of AP and its related pulmonary hazards. This experiment aimed to evaluate the mitigating action of rivastigmine (Riva) in lung injury that occurs on the top of acute pancreatitis (AP) induced in rats. Thirty-two male Wister rats were randomized to one of four groups: control, Riva-treated, acute pancreatitis (AP), and acute pancreatitis treated by Riva. Serum amylase and lipase levels were assessed. Pulmonary oxidative stress and inflammatory indicators were estimated. A pancreatic and pulmonary histopathological examination, as well as an immunohistochemical study of HSP70, was carried out. Riva significantly attenuated the L-arginine-related lung injury that was characterized by increased pulmonary inflammatory biomarkers (interleukin-6 [IL-6]), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), increased pulmonary oxidative markers (total nitrite/nitrate [NOx]), MDA, decreased total antioxidant capacity (TAC), and reduced glutathione level (GSH)) with increased caspase-3 expression. Therefore, Riva retains potent ameliorative effects against lung injury that occur on the top of AP by relieving oxidative stress, inflammation, and apoptosis via HSP70/IL6/NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , Pancreatite , Rivastigmina , Animais , Masculino , Ratos , Doença Aguda , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Interleucina-6 , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Ratos Wistar , Rivastigmina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
20.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37259319

RESUMO

The present experiment aimed to identify the potential protective role of empagliflozin (EMPA) on haloperidol (HAL)-induced ovarian damage in female rats because of its anti-inflammatory, antioxidant, and antiapoptotic effects. EMPA was administered in the presence and absence of HAL. Thirty-two adult female albino rats were divided into four groups. Control group, EMPA group: received EMPA (10 mg/kg/day) p.o., HAL group: received HAL (2 mg/kg/day) p.o., HAL + EMPA group: HAL (2 mg/kg/day) combined with EMPA for 28 days. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and anti-mullerian hormone (AMH) levels were measured. Ovarian oxidative stress parameters, besides inflammatory and apoptotic biomarkers, and ovarian Sirtuin-1 (Sirt-1) were evaluated. Ovarian histopathological examination and heat shock protein 70 (Hsp70) immunohistochemical study were performed. HAL significantly increased serum levels of FSH, LH, and ovarian inflammatory, apoptotic, and oxidative stress biomarkers and decreased serum AMH levels and Sirt-1 expression. Histopathological findings of ovarian damage and high Hsp70 immunoexpression were detected. EMPA significantly normalized the distributed hormonal levels, oxidative stress, inflammatory, and apoptotic biomarkers with a prompt improvement in the histopathological picture and a decrease in Hsp70 immunoexpression. Accordingly, EMPA protected against HAL-induced ovarian toxicity by modulating the Sirt-1/Hsp70/TNF-α/caspase-3 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA