Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 80(4): 578-591.e5, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33171122

RESUMO

Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter exported by diseased cells and imported into host cells to activate the innate immune STING pathway. We previously identified SLC19A1 as a cGAMP importer, but its use across human cell lines is limited. Here, we identify LRRC8A heteromeric channels, better known as volume-regulated anion channels (VRAC), as widely expressed cGAMP transporters. LRRC8A forms complexes with LRRC8C and/or LRRC8E, depending on their expression levels, to transport cGAMP and other 2'3'-cyclic dinucleotides. In contrast, LRRC8D inhibits cGAMP transport. We demonstrate that cGAMP is effluxed or influxed via LRRC8 channels, as dictated by the cGAMP electrochemical gradient. Activation of LRRC8A channels, which can occur under diverse stresses, strongly potentiates cGAMP transport. We identify activator sphingosine 1-phosphate and inhibitor DCPIB as chemical tools to manipulate channel-mediated cGAMP transport. Finally, LRRC8A channels are key cGAMP transporters in resting primary human vasculature cells and universal human cGAMP transporters when activated.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transporte Biológico , Ciclopentanos/farmacologia , Humanos , Indanos/farmacologia , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Células U937
2.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277431

RESUMO

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Células CHO , Canais de Cloro CLC-2 , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cricetulus , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
3.
FASEB J ; 32(3): 1566-1578, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29118086

RESUMO

Glucagon-like peptide 1 (GLP-1) is a major incretin that controls glucose homeostasis. The secretion of mature GLP-1 is regulated via GPCRs, including bile acid receptor G protein-coupled bile acid receptor 1, which uses cAMP signaling to enhance the exocytosis of GLP-1-containing vesicles. However, the role of cAMP-mediated transcription has not been clearly demonstrated to date. In this study, we explored the role of cAMP response element-binding protein/CREB-regulated transcription coactivator 2 (CREB/CRTC2)-dependent transcription on GLP-1 secretion in the L cells. We found that the reduced CREB/CRTC2 activity impaired the cAMP-dependent increase in GLP-1 secretion, whereas expression of constitutively active CRTC2 increased GLP-1 exocytosis from the L cells. Close investigation revealed that expression of not only proglucagon but also PC1/3, an endopeptidase for GLP-1 maturation, is transcriptionally regulated by CREB/CRTC2. Furthermore, expression of peroxisome proliferator-activating receptor coactivator 1 α is also reduced upon depletion of CRTC2, leading to the decreased expression of oxidative phosphorylation (OxPhos) genes, reduced ATP levels, and calcium concentrations in the L cells. Finally, we observed that intestine-specific CRTC2 knockout mice displayed reduced GLP-1 expression, leading to the lower plasma GLP-1 levels, impaired glucose tolerance, and decreased insulin-containing ß cells in pancreatic islets. Our data show that the CREB/CRTC2-dependent transcriptional pathway is critical for regulating glucose homeostasis by controlling production of GLP-1 from the L cells at the level of transcription, maturation, and exocytosis.-Lee, J.-H., Wen, X., Cho, H., Koo, S.-H. CREB/CRTC2 controls GLP-1-dependent regulation of glucose homeostasis.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Fatores de Transcrição/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular , Peptídeo 1 Semelhante ao Glucagon/genética , Glucose/genética , Camundongos , Camundongos Knockout , Fosforilação Oxidativa , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia
4.
Exp Mol Med ; 51(10): 1-14, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601786

RESUMO

The sodium leak channel NALCN is a key player in establishing the resting membrane potential (RMP) in neurons and transduces changes in extracellular Ca2+ concentration ([Ca2+]e) into increased neuronal excitability as the downstream effector of calcium-sensing receptor (CaSR). Gain-of-function mutations in the human NALCN gene cause encephalopathy and severe intellectual disability. Thus, understanding the regulatory mechanisms of NALCN is important for both basic and translational research. This study reveals a novel mechanism for NALCN regulation by arginine methylation. Hippocampal dentate granule cells in protein arginine methyltransferase 7 (PRMT7)-deficient mice display a depolarization of the RMP, decreased threshold currents, and increased excitability compared to wild-type neurons. Electrophysiological studies combined with molecular analysis indicate that enhanced NALCN activities contribute to hyperexcitability in PRMT7-/- neurons. PRMT7 depletion in HEK293T cells increases NALCN activity by shifting the dose-response curve of NALCN inhibition by [Ca2+]e without affecting NALCN protein levels. In vitro methylation studies show that PRMT7 methylates a highly conserved Arg1653 of the NALCN gene located in the carboxy-terminal region that is implicated in CaSR-mediated regulation. A kinase-specific phosphorylation site prediction program shows that the adjacent Ser1652 is a potential phosphorylation site. Consistently, our data from site-specific mutants and PKC inhibitors suggest that Arg1653 methylation might modulate Ser1652 phosphorylation mediated by CaSR/PKC-delta, leading to [Ca2+]e-mediated NALCN suppression. Collectively, these data suggest that PRMT7 deficiency decreases NALCN methylation at Arg1653, which, in turn, decreases CaSR/PKC-mediated Ser1652 phosphorylation, lifting NALCN inhibition, thereby enhancing neuronal excitability. Thus, PRMT7-mediated NALCN inhibition provides a potential target for the development of therapeutic tools for neurological diseases.


Assuntos
Canais Iônicos/genética , Proteínas de Membrana/genética , Neurônios/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Animais , Arginina/genética , Arginina/metabolismo , Encefalopatias/genética , Encefalopatias/patologia , Sinalização do Cálcio/genética , Células HEK293 , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Metilação , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores de Detecção de Cálcio/genética
5.
Elife ; 52016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27656903

RESUMO

Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Drosophila/efeitos da radiação , Canais de Cátion TRPC/metabolismo , Animais , Comportamento Alimentar/efeitos da radiação , Radicais Livres/metabolismo , Canais Iônicos , Luz Solar , Canal de Cátion TRPA1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA