RESUMO
BACKGROUND: Numerous studies have indicated a growing prevalence of hyperuricemia. Elevated levels of serum uric acid (SUA) have been established as influential factors in conditions such as obesity, metabolic syndrome, diabetes mellitus, gout, and cardiovascular disease. Overweight and obesity are closely related to an increase in SUA. Our objective is to demonstrate the mediating role of liver enzyme in the correlation between body mass index (BMI) and SUA. METHODS: A total of 5925 adults aged 18 to 65 were included in this cross-sectional study. Logistic regression and mediation analysis were used to investigate the relationship between BMI and hyperuricemia as well as liver enzyme levels. Standard methods were used to determine the biochemical indexes, including SUA, liver enzymes, and blood lipids in the collected samples. RESULTS: The study revealed that the prevalence of hyperuricemia was 28.0%. Furthermore, the prevalence of overweight and obesity was as high as 48.5%, with 70.7% of this subgroup presenting with hyperuricemia. There was a positive correlation between BMI and hyperuricemia, and elevated levels of liver enzymes (ALT, AST, GGT) were associated with a higher risk of hyperuricemia. The study also observed a positive correlation between BMI and liver enzymes (ALT, AST, GGT). The study findings suggested that ALT, AST, and GGT played significant mediating roles in the relationship between BMI and SUA. Specifically, the unadjusted model revealed that ALT and GGT accounted for 22.12% and 18.13% of the mediation effects, respectively. CONCLUSIONS: The study found that BMI is associated with hyperuricemia, where liver enzyme abnormalities may have a mediating role. It is suggested that being overweight or obese may affect liver enzyme levels, leading to increased SUA levels. Controlling weight and liver enzyme levels may help prevent and treat hyperuricemia.
Assuntos
Índice de Massa Corporal , Hiperuricemia , Análise de Mediação , Ácido Úrico , Humanos , Adulto , Pessoa de Meia-Idade , Masculino , Ácido Úrico/sangue , Feminino , Estudos Transversais , Hiperuricemia/epidemiologia , Hiperuricemia/sangue , Adolescente , Adulto Jovem , Idoso , Obesidade/epidemiologia , Obesidade/sangue , Fígado/enzimologia , Alanina Transaminase/sangue , Prevalência , Sobrepeso/epidemiologia , Sobrepeso/sangue , gama-Glutamiltransferase/sangue , Aspartato Aminotransferases/sangue , China/epidemiologiaRESUMO
Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.
Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Condrócitos , Doença de Kashin-Bek , Selênio , Toxina T-2 , Serina-Treonina Quinases TOR , Toxina T-2/toxicidade , Toxina T-2/análogos & derivados , Autofagia/efeitos dos fármacos , Doença de Kashin-Bek/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Masculino , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Feminino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Adulto , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
As common pathogenic agents in the world and widely distributed globally, T-2 toxin and selenium deficiency might exacerbate toxic effects by combined exposure, posing a dramatic health hazard to humans and animals. In this study, we aim to elucidate the underlying mechanisms of renal fibrosis triggered by T-2 toxin and selenium deficiency exposure. A total of thirty-two rats are randomly divided into the normal control, T-2 toxin, selenium deficiency, and combined intervention groups. T-2 toxin (100 ng/g) is intragastric gavaged to the rats in compliance with the body weight. Both the standard (containing selenium 0.20 mg/Kg) and selenium-deficient (containing selenium 0.02 mg/Kg) diets were manufactured adhering to the AIN-93 formula. After 12 weeks of intervention, renal tissue ultrastructural and pathological changes, inflammatory infiltration, epithelial mesenchymal transition (EMT), and extracellular matrix (ECM) deposition are evaluated, respectively. Metabolomics analysis is conducted to explore the underlying pathology of renal fibrosis, followed by the validation of potential mechanisms at gene and protein levels. T-2 toxin and selenium deficiency exposure results in podocyte foot process elongation or fusion, tubular vacuolization and dilatation, and collagen deposition in the kidneys. Additionally, it also increases inflammatory infiltration, EMT conversion, and ECM deposition. Metabolomics analysis suggests that T-2 toxin and selenium deficiency influence amino acid and cholesterol metabolism, respectively, and the estrogen signaling pathway is probably engaged in renal fibrosis progression. Moreover, T-2 toxin and selenium deficiency are found to regulate the expressions of the ERα/PI3K/Akt signaling pathway. In conclusion, T-2 toxin and selenium deficiency synergistically exacerbate renal fibrosis through regulating the ERα/PI3K/Akt signaling pathway, and inflammatory infiltration, EMT and ECM deposition are involved in this process.
Assuntos
Nefropatias , Selênio , Toxina T-2 , Animais , Ratos , Receptor alfa de Estrogênio/metabolismo , Fibrose , Nefropatias/induzido quimicamente , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/toxicidade , Transdução de Sinais , Toxina T-2/toxicidadeRESUMO
Cancer patients in China encounter distinctive challenges stemming from cultural disparities and variations in the healthcare systems. This meta-analysis aimed to provide a synthesis of the expressive writing (EW) interventions delivered to Chinese cancer patients and assess the pooled effect of EW on their well-being. The review adheres to the latest PRISMA 2020 guidelines to ensure transparency and rigour. Randomized control trials (RCTs) published before 1 April 2023, and meeting the inclusion criteria were included. Keywords searching was performed in both English and Chinese electronic databases. Ten RCTs were identified and included in the analysis. The results showed that EW usually encompassed four to six writing sessions; the most common writing themes were 'emotional expression', 'cognitive appraisal', 'benefit finding', 'coping strategies' and 'looking to the future'. The meta-analysis suggested that EW had a substantial impact on reducing anxiety levels (Hedges' g = -1.22, 95% CI [-1.54, -0.90], I2 = 0.00%). It is worth noting that although the results of these studies could not be statistically synthesized, their individual findings suggest that EW may be beneficial in reducing anxiety, self-perceived burden and depressive symptoms, as well as increasing self-efficacy in Chinese cancer patients. In conclusion, this review highlights the importance and effectiveness of Ewin alleviating anxiety among Chinese cancer patients and underscores the potential benefits of incorporating EW into comprehensive care programmes for cancer patients in China. More RCTs are needed to explore the broader impact of EW in China.
Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/psicologia , Ansiedade , Redação , Capacidades de Enfrentamento , ChinaRESUMO
Graphene oxide has aroused significant interest for a range of applications owing to their outstanding physico-chemical properties. Specifically, the presence of a large number of reactive chemical moieties such as hydroxyl, carboxyl, epoxide, and sp2 carbon allows these novel materials to be tailored with additional functionalities with the purpose of tuning intrinsic properties. There has been a vivid discussion on the non-covalent modification of GO; however, a comprehensive summary of the chemical functionalization which enables forming a stable particle is still elusive. Hence, in this study, we summarize recently advanced methodologies used for designing the functional GO for their use in specific applications. Together with a brief discussion on the essential characterization techniques, this study will provide fundamental insight into the latest developments in the preparation of covalently modified GO derivatives, thereby leading to their broader utilization in future.
RESUMO
Hyperpigmented skin diseases such as melasma, freckles, and melanosis usually mar the appearance of patients. Traditional herbal medicines are highly accepted in inhibiting skin pigmentation, with advantages of high efficiency, low cost, and low side effects. Selaginellin (SEL), one of the active compounds of selaginella, has been proved to be exhibit antineoplastic, antioxidant, antisenescence, and antiapoptosis activities. In this study, we found that SEL can inhibit melanogenesis in vitro and in vivo. A mechanism study found that SEL inhibits melanogenesis through inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, then down-regulating the expression of microphthalmia-associated transcription factor (MITF) and downstream genes tyrosinase (TYR) and tyrosinase-related protein 2 (TYRP2). UVB-activated paracrine function of fibroblasts and keratinocytes promotes melanogenesis of melanocytes. Interestingly, SEL antagonizes UVB-activated paracrine function of fibroblasts and keratinocytes. These findings indicate that SEL can be a potential whitening compound to inhibit melanogenesis.
Assuntos
Melaninas , Proteínas Quinases Ativadas por Mitógeno , Humanos , Melanócitos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Transdução de SinaisRESUMO
Woody peony (Paeonia × suffruticosa Andr.) has many cultivars with genetic variances. The flower essential oil is valued in cosmetics and fragrances. This study was to investigate the chemical diversity of essential oils of eleven representative cultivars and their potential target network. Hydro-distillation afforded yields of 0.11-0.25%. Essential oils were analyzed by GC-MS and GC-FID which identified 105 compounds. Three clusters emerged from multivariate analysis, representative of phloroglucinol trimethyl ether ('Caihui'), citronellol ('Jingyu', 'Zhaofen' and 'Baiyuan Zhenghui') and mixed (the rest of the cultivars) chemotypes. 'Zhaofen' and 'Jingyu' also exhibited low levels of other rose-related compounds. The main components were subjected to a target network approach. Drug-likeness screening gave 20 compounds with predictive blood-brain barrier permeation. Compound target network identified six key compounds, namely nerol, citronellol, geraniol, geranic acid, cis-3-hexen-1-ol and 1-hexanol. Top enriched terms in GO, KEGG and DisGeNET were mostly related to the central nervous system (CNS). Protein-protein interactions revealed a core network of 14 targets, 11 of which were CNS-related (targets for antidepressants, analgesics, antipsychotics, anti-Alzheimer's and anti-Parkinson's agents). This work provides useful information on the production of woody peony essential oils with specific chemotypes and reveals their potential importance in aromatherapy for alternative treatment of CNS disorders.
Assuntos
Óleos Voláteis , Paeonia , Flores , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Paeonia/químicaRESUMO
Chronical hyperuricemia, a severe metabolic disease characterized by increased serum uric acid, urea nitrogen, and creatinine, has a positive correlation with the risks of gouty arthritis, diabetes, hypertension, and kidney damage. Abnormal purine metabolism and reduced uric acid excretion are the major causes of hyperuricemia, which, thus, points to a potential strategy of preventing from or delaying the progress of hyperuricemia-related diseases and its complications by effectively controlling the serum uric acid level. Increasing evidence has revealed that Chinese medicines alleviate hyperuricemia through regulating intestinal flora, which plays a pivotal role in regulating metabolites, including uric acid level. The disease treatment with traditional Chinese medicine is based on syndrome differentiation, and Chinese medicines often have multiple effects and a wide range of targets. In this review, we summarized the anti-hyperuricemia effects and mechanisms of active compounds in Chinese medicines, single Chinese medicinal herbs, and Chinese medicinal prescriptions in regulating the uric acid level via intestinal flora and metabolites, which will be helpful for further study and application of Chinese medicines in hyperuricemia treatment.
Assuntos
Artrite Gotosa , Microbioma Gastrointestinal , Hiperuricemia , China , Humanos , Hiperuricemia/tratamento farmacológico , Ácido ÚricoRESUMO
T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.
Assuntos
Metabolômica , Miocárdio , Ratos Sprague-Dawley , Selênio , Toxina T-2 , Animais , Toxina T-2/toxicidade , Selênio/farmacologia , Selênio/administração & dosagem , Masculino , Ratos , Miocárdio/metabolismo , Miocárdio/patologia , Dieta , Coração/efeitos dos fármacosRESUMO
Selenium (Se) is a trace element necessary for humans to maintain normal physiological activities, and Se deficiency may lead to splenic injury, while Se supplementation can alleviate splenic injury. However, the mechanism is unclear. In this study, we constructed a Se deficiency animal model by feeding Sprague-Dawley (SD) rats with low Se feed. Meanwhile, we observed the repairing effect of Se supplementation on splenic injury with two doses of novel nano-selenium (Nano-Se) supplement by gavage. We measured the Se content in the spleens of the rats by atomic fluorescence spectroscopy (AFS) method and combined the results of hematoxylin-eosin (HE) and Masson staining to observe the splenic injury, comprehensively evaluating the construction of the animal model of low selenium-induced splenic injury. We measured the mRNA and protein expression levels of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa-B (NF-κB), and interleukin-6 (IL-6) in the spleen by Real-time quantitative polymerase chain reaction (qPCR), western blot (WB), and immunohistochemistry (IHC). We found that the Se deficiency group exhibited lower Se content, splenic fibrosis, and high expression of p38 MAPK, NF-κB, and IL-6 compared to the normal group. The Se supplement groups exhibited higher Se content, attenuated splenic injury, and down-regulated expression of p38 MAPK, NF-κB, and IL-6 relative to the Se deficiency group. This study suggests that Se deficiency leads to splenic injury in rats, and Se supplementation may attenuate splenic injury by inhibiting the expression of p38 MAPK, NF-κB and IL-6.
Assuntos
NF-kappa B , Selênio , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Baço/metabolismo , Selênio/uso terapêutico , Selênio/farmacologia , Interleucina-6 , Ratos Sprague-Dawley , Suplementos NutricionaisRESUMO
Bone mineral density (BMD) is a key parameter widely used in the assessment of bone health. Although many investigations have explored the relationship between trace elements and BMD, there are fewer studies focused on serum copper and BMD, especially for adolescents. Using data extracted from the National Health and Nutrition Examination Survey, we applied a multiple-linear regression and smooth curve fitting to assess the relationship between serum copper and BMD. A total of 910 participants were finally included in this study. After adjusting for relevant covariates, serum copper was negatively associated with lumbar spine BMD (ß = -0.057, 95% CI: -0.109 to -0.005), trunk bone BMD (ß = -0.068, 95% CI: -0.110 to -0.026), pelvis BMD (ß = -0.085, 95% CI: -0.145 to -0.024), subtotal BMD (ß = -0.072, 95% CI: -0.111 to -0.033), and total BMD (ß = -0.051, 95% CI: -0.087 to -0.016) (p < 0.05). In quartile analysis, the highest level of serum copper was associated with decreased BMD when compared with those at the lowest quartile (p < 0.05). The stratified analysis revealed a significant interaction between age and the effects of serum copper on trunk bone BMD (p = 0.022) and pelvis BMD (p = 0.018). Meanwhile, the higher level of serum copper was negatively associated with BMD in males, and gender modified the relationship (p < 0.001). Future longitudinal studies will be necessary for a more definitive interpretation of our results.
Assuntos
Densidade Óssea , Cobre , Masculino , Humanos , Adolescente , Estados Unidos/epidemiologia , Cobre/farmacologia , Absorciometria de Fóton/métodos , Inquéritos Nutricionais , Vértebras LombaresRESUMO
Instance segmentation is crucial to modern agriculture and the management of pig farms. In practical farming environments, challenges arise due to the mutual adhesion, occlusion, and dynamic changes in body posture among pigs, making accurate segmentation of multiple target pigs complex. To address these challenges, we conducted experiments using video data captured from varying angles and non-fixed lenses. We selected 45 pigs aged between 20 and 105 days from eight pens as research subjects. Among these, 1917 images were meticulously labeled, with 959 images designated for the training set, 192 for validation, and 766 for testing. To enhance feature utilization and address limitations in the fusion process between bottom-up and top-down feature maps within the feature pyramid network (FPN) module of the YOLACT model, we propose a pixel self-attention (PSA) module, incorporating joint channel and spatial attention. The PSA module seamlessly integrates into multiple stages of the FPN feature extraction within the YOLACT model. We utilized ResNet50 and ResNet101 as backbone networks and compared performance metrics, including AP0.5, AP0.75, AP0.5-0.95, and AR0.5-0.95, between the YOLACT model with the PSA module and YOLACT models equipped with BAM, CBAM, and SCSE attention modules. Experimental results indicated that the PSA attention module outperforms BAM, CBAM, and SCSE, regardless of the selected backbone network. In particular, when employing ResNet101 as the backbone network, integrating the PSA module yields a 2.7% improvement over no attention, 2.3% over BAM, 2.4% over CBAM, and 2.1% over SCSE across the AP0.5-0.95 metric. We visualized prototype masks within YOLACT to elucidate the model's mechanism. Furthermore, we visualized the PSA attention to confirm its ability to capture valuable pig-related information. Additionally, we validated the transfer performance of our model on a top-down view dataset, affirming the robustness of the YOLACT model with the PSA module.
RESUMO
Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.
RESUMO
This paper investigates the relationship between mindfulness and well-being within the context of compliance with prophylactic measures in the time of COVID-19. We conducted a large-scale survey among a representative sample of the French population. We measured mindfulness, using the Mindful Attention Awareness Scale, and the extent to which respondents were impacted by COVID-19 in terms of their mood and quality of sleep, as well as how they complied with prophylactic measures. Our results suggest that more mindful individuals were less negatively impacted by COVID-19 with regard to their sleep and mood. Concerning the prophylactic measures, we obtained mixed results: more mindful participants were more likely to respect lockdowns, physical distancing and to cough in their sleeves, but did not wash their hands, wear masks or avoid touching their face more often than less mindful individuals.
Assuntos
COVID-19 , Atenção Plena , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Humanos , Máscaras , Pandemias/prevenção & controleRESUMO
BACKGROUND: The expression levels of the programmed cell death ligand 1 (PD-L1), known as an immune-inhibitory molecule, are closely associated with cancer stem cell (CSCs) immune escape. Recently, PD-L1 has also been reported to be able to regulate the self-renewal of cancer stem cells. However, The expression and intrinsic role of PD-L1 in endometrial cancer stem-like cell (ECSC) maintenance and its underlying mechanism of action remain unclear. METHODS: Using flow cytometry and western blot assays, we have demonstrated that PD-L1 expression is higher in ECSCs derived from endometrial cancer than in nonstem-like cancer cells. Using mouse xenograft assays for ECSC tumorigenicity. Using gene reporter assay for uncovering the regulation mechanism of PD-L1 in the hypoxia. RESULTS: We revealed the high expression levels of PD-L1 in ECSCs and its correlation with self-renewal. We further found that PD-L1 knockdown reduced expression of several pluripotency-related genes (aldehyde dehydrogenase 1 (ALDH1), CD133, OCT4, SOX2, NANOG), impaired ECSC proliferation and undifferentiated colonies and decreased the number of CD133 positive ECSCs and the number of stem-like spheres. Furthermore, we found that PD-L1 knockdown inhibited ECSC tumorigenicity and the PD-L1 induced self-renewal capability of ECSCs was dependent upon hypoxia HIF-1α and HIF-2α activation. CONCLUSIONS: These data link ECSC maintenance to PD-L1 expression through hypoxia and suggest a promising target for PD1/PD-L1 immunotherapy.
Assuntos
Antígeno B7-H1 , Neoplasias do Endométrio , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Feminino , Humanos , Hipóxia , Camundongos , Células-Tronco Neoplásicas/metabolismoRESUMO
The water transport along graphene-based nanochannels has gained significant interest. However, experimental access to the influence of defects and impurities on transport poses a critical knowledge gap. Here, we investigate the water transport of cation intercalated graphene oxide membranes. The cations act as water-attracting impurities on the channel walls. Via water transport experiments, we show that the slip length of the nanochannels decay exponentially with the hydrated diameter of the intercalated cations, confirming that water transport is governed by the interaction between water molecules and the impurities on the channel wall. The exponential decay of slip length approximates non-slip conditions. This offers experimental support for the use of the Hagen-Poiseuille equation in graphene-based nanochannels, which was previously only confirmed by simulations. Our study gives valuable feedback to theoretical predictions of the water transport along graphene-based channels with water-attracting impurities.
RESUMO
PURPOSE: The stimulator of interferon genes (STING) pathway plays a crucial role in antitumor immunity, and it is strictly regulated by many types of post-translational modifications. However, the contribution of acetylation involved in the regulation of STING to endometrial tumorigenesis remains unclear. METHODS: We attempted to identify the key role of STING in endometrial carcinoma (EC) tissue and cell lines and explore its epigenetic regulation mechanism by HDACs that are critically involved in EC. We used IHC and qRT-PCR to detect the protein level and mRNA level of STING expression in endometrial carcinoma tissues, then explored the potential role of STING in tumor proliferation and apoptosis by CCK8 and flow cytometry, and identified the STING effect in the tumorigenicity by a mouse xenograft assay. We explored the possible relationship of acetylation alteration in STING regulation by ChIP analysis and Co-IP, and we knocked out STING in ECC1 and Ishikawa cells using CRISPR-Cas9 to further confirm the critical role of STING restoration induced by HDAC3 inhibitor RGFP-966 in the proliferation and apoptosis. RESULTS: We found that STING expression was largely decreased and worked as an important regulator of cell proliferation and apoptosis; either activated or overexpressed STING, with both pharmacological and genetic approaches, largely blocked cell proliferation and induced apoptosis in EC. Moreover, STING expression was deregulated by both ß-estradiol and HDAC3. Mechanically, we determined that HDAC3 can interact with ß-estradiol-ERα and induce deacetylation of histone 3 lysine 4 at the STING promoter, thereby decreasing STING expression. Inhibition of HDAC3 increased STING expression, thereby inhibiting tumorigenesis. CONCLUSION: This study reveals a novel molecular mechanism by which HDAC3 inhibits STING transcription via ß-estradiol-ERα and provides a promising therapy (a combination of HDAC and STING) for combating endometrial cancer.
RESUMO
Graphene oxide (GO)-based materials have demonstrated promising potential for adsorption and purification applications. Due to its amphiphilic nature, GO offers the possibility of removing various kinds of contaminants, including heavy metal ions and organic pollutants from aqueous environments. Here, we present size-selective ion adsorption in GO-based laminates by directly measuring the weight uptake of slats. Adsorption studies were conducted in graphene oxide purchased from Nisina Materials Japan prepared using a controlled method. We tuned the interlayer spacing of GO membranes via cationic control solutions using intercalation of very small salts ions (i.e., K+, Na+, Cl-) very precisely to facilitate the adsorption of larger ions such as [Fe(CN)6]4- and [Fe(CN)6]3-. This study demonstrates that if the opening of nanocapillaries within the laminates is bigger than the hydrated diameter of ions, the adsorption occurs within the membranes while for smaller opening, with no ion entrance the sorption occurs on the surface of the membranes.
RESUMO
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood-testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.
Assuntos
Infecção por Zika virus , Zika virus , Citoesqueleto de Actina , Animais , Barreira Hematotesticular , Cromatografia Líquida , Masculino , Camundongos , Espectrometria de Massas em TandemRESUMO
The coronavirus disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the worst public health crisis in a century. However, knowledge about the dynamics of antibody responses in patients with COVID-19 is still poorly understood. In this study, we performed a serological study with serum specimens collected at the acute and the convalescent phases from 104 patients with severe COVID-19 who were part of the first wave of COVID-19 cases in Wuhan, China. Our findings revealed that neutralizing antibodies to SARS-CoV-2 are persistent for at least 6 months in patients with severe COVID-19, despite that IgG levels against the receptor binding domain (RBD) and nucleocapsid protein (N) IgG declined from the acute to the convalescent phase. Moreover, we demonstrate that the level of RBD-IgG is capable of correlating with SARS-CoV-2-neutralizing activities in COVID-19 serum. In summary, our findings identify the magnitude, functionality, and longevity of antibody responses in patients with COVID-19, which sheds light on the humoral immune response to COVID-19 and would be beneficial for developing vaccines.