RESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
There is an urgent need for new antibiotics against Gram-negative pathogens that are resistant to carbapenem and third-generation cephalosporins, against which antibiotics of last resort have lost most of their efficacy. Here we describe a class of synthetic antibiotics inspired by scaffolds derived from natural products. These chimeric antibiotics contain a ß-hairpin peptide macrocycle linked to the macrocycle found in the polymyxin and colistin family of natural products. They are bactericidal and have a mechanism of action that involves binding to both lipopolysaccharide and the main component (BamA) of the ß-barrel folding complex (BAM) that is required for the folding and insertion of ß-barrel proteins into the outer membrane of Gram-negative bacteria. Extensively optimized derivatives show potent activity against multidrug-resistant pathogens, including all of the Gram-negative members of the ESKAPE pathogens1. These derivatives also show favourable drug properties and overcome colistin resistance, both in vitro and in vivo. The lead candidate is currently in preclinical toxicology studies that-if successful-will allow progress into clinical studies that have the potential to address life-threatening infections by the Gram-negative pathogens, and thus to resolve a considerable unmet medical need.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Animais , Antibacterianos/efeitos adversos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Produtos Biológicos/química , Descoberta de Drogas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fluorescência , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Humanos , Lipopolissacarídeos/química , Compostos Macrocíclicos/efeitos adversos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutação , Peptidomiméticos/efeitos adversos , Marcadores de FotoafinidadeRESUMO
With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction.