Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem ; 16(6): 913-921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531969

RESUMO

Post-translational modifications (PTMs) dynamically regulate cellular processes. Lysine undergoes a range of acylations, including malonylation, succinylation (SucK) and glutarylation (GluK). These PTMs increase the size of the lysine side chain and reverse its charge from +1 to -1 under physiological conditions, probably impacting protein structure and function. To understand the functional roles of these PTMs, homogeneously modified proteins are required for biochemical studies. While the site-specific encoding of PTMs and their mimics via genetic code expansion has facilitated the characterization of the functional roles of many PTMs, negatively charged lysine acylations have defied this approach. Here we describe site-specific incorporation of SucK and GluK into proteins via temporarily masking their negative charge through thioester derivatives. We prepare succinylated and glutarylated bacterial and mammalian target proteins, including non-refoldable multidomain proteins. This allows us to study how succinylation and glutarylation impact enzymatic activity of metabolic enzymes and regulate protein-DNA and protein-protein interactions in biological processes from replication to ubiquitin signalling.


Assuntos
Código Genético , Processamento de Proteína Pós-Traducional , Ácido Succínico , Ácido Succínico/metabolismo , Ácido Succínico/química , Humanos , Lisina/química , Lisina/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Glutaratos/metabolismo , Glutaratos/química
2.
Nat Commun ; 12(1): 6515, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764289

RESUMO

The post-translational modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) represents one of the most important regulators in eukaryotic biology. Polymeric Ub/Ubl chains of distinct topologies control the activity, stability, interaction and localization of almost all cellular proteins and elicit a variety of biological outputs. Our ability to characterize the roles of distinct Ub/Ubl topologies and to identify enzymes and receptors that create, recognize and remove these modifications is however hampered by the difficulty to prepare them. Here we introduce a modular toolbox (Ubl-tools) that allows the stepwise assembly of Ub/Ubl chains in a flexible and user-defined manner facilitated by orthogonal sortase enzymes. We demonstrate the universality and applicability of Ubl-tools by generating distinctly linked Ub/Ubl hybrid chains, and investigate their role in DNA damage repair. Importantly, Ubl-tools guarantees straightforward access to target proteins, site-specifically modified with distinct homo- and heterotypic (including branched) Ub chains, providing a powerful approach for studying the functional impact of these complex modifications on cellular processes.


Assuntos
Polímeros/química , Ubiquitina/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
3.
J Virol Methods ; 290: 114083, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515664

RESUMO

In the current pandemic of SARS-CoV-2, rapid identification of infected individuals is crucial for management and control of the outbreak. However, transport of samples, sample processing and RT-qPCR analysis in laboratories are time-consuming. Here we present a prototype of a novel nucleic acid-based test format - pulse controlled amplification - that allows detection of SARS-CoV-2 directly from up to eight swab samples simultaneously without the need for RNA extraction within 25 min with a sensitivity of 100 % for samples with a viral load of ≥ 1.6 × 10e3 copies/µl This new principle might pave the way to rapid and sensitive point of care testing.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/normas , Humanos , Técnicas de Amplificação de Ácido Nucleico/normas , Testes Imediatos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
4.
Front Immunol ; 12: 694055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276685

RESUMO

Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels.


Assuntos
Doenças Autoimunes/imunologia , Biomarcadores Tumorais/metabolismo , Doenças Transmissíveis/imunologia , Citometria de Fluxo , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias/imunologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA