Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Chemistry ; 30(9): e202303438, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032321

RESUMO

Manganese(I) carbonyl complexes bearing a MACHO-type ligand (HN(CH2 CH2 PR2 )2 ) readily react in their amido form with CO2 to generate 4-membered {Mn-N-C-O} metallacycles. The stability of the adducts decreases with the steric demand of the R groups at phosphorous (R=isopropyl>adamantyl). The CO2 -adducts display generally a lower reactivity as compared to the parent amido complexes. These adducts can thus be interpretated as masked forms of the active amido catalysts and potentially play important roles as off-loop species or branching points in catalytic transformations of carbon dioxide.

2.
Angew Chem Int Ed Engl ; : e202408356, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842465

RESUMO

Rhodium complexes in the -I and 0 oxidation states are of great potential interest in catalytic applications. In contrast to their rhodium +I congeners, however, the structural and electronic parameters governing their access and stability are far less understood. Herein, we investigate the two-electron reduction of a parameterized series of bis(diphosphine) Rh complexes [Rh(dxpy)2]NTf2 (x = P-substituent, y = alkanediyl bridging P atoms). Through (electro)reductions from the RhI parents, Rh-I d10-complexes were obtained and characterized spectroscopically, including 103Rh NMR data. The reductive steps convolute with structural rearrangements from square planar to tetrahedral coordination. We found that the extent of these reorganisations defines whether the first E0(RhI/0) and second E0(Rh0/-I) reduction potentials are normally ordered, leading to monoelectronic stepwise events, or inverted, giving bielectronic transitions. Reductionist approaches based on Hammett parameters or the P-Rh-P bite angles provide only partial correlations with the redox potentials. However, we identified the C-O stretch of analogue diphosphine complexes as an expedient computational parameter that enables these correlations through both electronic and geometric features, even in a predictive manner. Gaining control over two-electron reduction behaviors through rationalized ligand effects has potential impact beyond Rh complexes, for molecular and enzymatic metal sites commonly exhibiting bielectronic transitions.

3.
J Am Chem Soc ; 145(51): 27922-27932, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38086018

RESUMO

The research presented herein explores a cobalt-based catalytic system, distinctively featuring a cooperative boron-centric element within its intricate ligand architecture. This system is strategically engineered to enable the integration of a singular carbon atom into aldehydes, a process culminating in the production of (Z)-silyl enol ethers. Beyond offering an efficient one-pot synthesis route, this method adeptly overcomes challenges inherent to conventional techniques, such as the need for large amounts of additives, restrictive functional group tolerance, and extreme reaction temperatures. Initial mechanistic studies suggest the potential role of a cobalt-carbene complex as a catalytically significant species and underscore the importance of the borane segment. Collectively, these observations highlight the potential of this system in advancing complex bond activation pursuits.

4.
J Am Chem Soc ; 145(31): 17103-17111, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490541

RESUMO

Hydrogenation reactions of carbon-carbon unsaturated bonds are central in synthetic chemistry. Efficient catalysis of these reactions classically recourses to heterogeneous or homogeneous transition-metal species. Whether thermal or electrochemical, C-C multiple bond catalytic hydrogenations commonly involve metal hydrides as key intermediates. Here, we report that the electrocatalytic alkyne semihydrogenation by molecular Ni bipyridine complexes proceeds without the mediation of a hydride intermediate. Through a combined experimental and theoretical investigation, we disclose a mechanism that primarily involves a nickelacyclopropene resting state upon alkyne binding to a low-valent Ni(0) species. A following sequence of protonation and electron transfer steps via Ni(II) and Ni(I) vinyl intermediates then leads to olefin release in an overall ECEC-type pattern as the most favored pathway. Our results also evidence that pathways involving hydride intermediates are strongly disfavored, which in turn promotes high semihydrogenation selectivity by avoiding competing hydrogen evolution. While bypassing catalytically competent hydrides, this type of mechanism still retains inner-metal-sphere characteristics with the formation of organometallic intermediates, often essential to control regio- or stereoselectivity. We think that this approach to electrocatalytic reductions of unsaturated organic groups can open new paradigms for hydrogenation or hydroelementation reactions.

5.
Inorg Chem ; 62(6): 2663-2671, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715662

RESUMO

Metal clusters featuring carbon and sulfur donors have coordination environments comparable to the active site of nitrogenase enzymes. Here, we report a series of di-iron clusters supported by the dianionic yldiide ligands, in which the Fe sites are bridged by two µ2-C atoms and four pendant S donors.The [L2Fe2] (L = {[Ph2P(S)]2C}2-) cluster is isolable in two oxidation levels, all-ferrous Fe2II and mixed-valence FeIIFeIII. The mixed-valence cluster displays two peaks in the Mössbauer spectra, indicating slow electron transfer between the two sites. The addition of the Lewis base 4-dimethylaminopyridine to the Fe2II cluster results in coordination with only one of the two Fe sites, even in the presence of an excess base. Conversely, the cluster reacts with 8 equiv of isocyanide tBuNC to give a monometallic complex featuring a new C-C bond between the ligand backbone and the isocyanide. The electronic structure descriptions of these complexes are further supported by X-ray absorption and resonant X-ray emission spectroscopies.

6.
Angew Chem Int Ed Engl ; 62(23): e202219127, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856294

RESUMO

The selective activation of C-F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2 ] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.

7.
Angew Chem Int Ed Engl ; 61(36): e202205515, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759682

RESUMO

An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.

8.
Inorg Chem ; 60(24): 19062-19078, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851088

RESUMO

Coordination compounds of earth-abundant 3d transition metals are among the most effective catalysts for the electrochemical reduction of carbon dioxide (CO2). While the properties of the metal center are crucial for the ability of the complexes to electrochemically activate CO2, systematic variations of the metal within an identical, redox-innocent ligand backbone remain insufficiently investigated. Here, we report on the synthesis, structural and spectroscopic characterization, and electrochemical investigation of a series of 3d transition-metal complexes [M = Mn(I), Fe(II), Co(II), Ni(II), Cu(I), and Zn(II)] coordinated by a new redox-innocent PNP pincer ligand system. Only the Fe, Co, and Ni complexes reveal distinct metal-centered electrochemical reductions from M(II) down to M(0) and show indications for interaction with CO2 in their reduced states. The Ni(0) d10 species associates with CO2 to form a putative Aresta-type Ni-η2-CO2 complex, where electron transfer to CO2 through back-bonding is insufficient to enable electrocatalytic activity. By contrast, the Co(0) d9 intermediate binding CO2 can undergo additional electron uptake into a formal cobalt(I) metallacarboxylate complex able to promote turnover. Our data, together with the few literature precedents, single out that an unsaturated coordination sphere (coordination number = 4 or 5) and a d7-to-d9 configuration in the reduced low oxidation state (+I or 0) are characteristics that foster electrochemical CO2 activation for complexes based on redox-innocent ligands.

9.
Inorg Chem ; 59(12): 8272-8283, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32390417

RESUMO

Ruthenium 4d-to-2p X-ray emission spectroscopy (XES) was systematically explored for a series of Ru2+ and Ru3+ species. Complementary density functional theory calculations were utilized to allow for a detailed assignment of the experimental spectra. The studied complexes have a range of different coordination spheres, which allows the influence of the ligand donor/acceptor properties on the spectra to be assessed. Similarly, the contributions of the site symmetry and the oxidation state of the metal were analyzed. Because the 4d-to-2p emission lines are dipole-allowed, the spectral features are intense. Furthermore, in contrast with K- or L-edge X-ray absorption of 4d transition metals, which probe the unoccupied levels, the observed 4p-to-2p XES arises from electrons in filled-ligand- and filled-metal-based orbitals, thus providing simultaneous access to the ligand and metal contributions to bonding. As such, 4d-to-2p XES should be a promising tool for the study of a wide range of 4d transition-metal compounds.

10.
Angew Chem Int Ed Engl ; 59(36): 15674-15681, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343876

RESUMO

The catalytic reduction of carbon dioxide (CO2 ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO2 preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.

11.
Inorg Chem ; 58(1): 121-132, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525542

RESUMO

The syntheses and molecular and electronic structures of the following complexes have been established by single crystal X-ray crystallography and UV-vis-NIR spectroscopy, and verified by density functional theory calculations (DFT B3LYP): [(η5-Cp)2ZrIV(tpy2-)]0 ( S = 0) 1, [(η5-Cp)2ZrIV(OMepdi2-)]0 ( S = 0) 2, [CoII(OMepdi•)(η2-BH4)]0 ( S = 0) 4, [RuII(OMepdi-H)Cl(PPh3)2]0 ( S = 0) 5, cis-[RuII(OMepdi0)Cl2(PPh3)]0 ( S = 0) 6, and [RuII(η2-OMepdi0)(η2-OMepdi-H)2]0 ( S = 0) 7, with (tpy0) being neutral 2,2':6',2'́-terpyridine, (tpy•)1- its π radical anion, (tpy2-)2- its dianion; (OMepdi0) neutral 2,6-bis(4-methoxyphenylmethylimine)pyridine, (OMepdi•)1- its radical anion and (OMepdi2-)2- its dianion; (OMepdi-H)1- represents the deprotonated form of the (OMepdi0) ligand where deprotonation takes place at the meta-position of the pyridine ring. Density functional theory calculations using the B3LYP functional were performed, establishing geometry optimized molecular and electronic structures. The structural parameter Δ = [(average distance Cpy-Cimine) - (av. distance Cpy-Npy + av. distance Cimine-Nimime)] is introduced for the characterization of the oxidation level of pdi (and analogously of tpy) ligands of M(pdi) (or M(tpy)) motifs for first row transition metals. The M(L0) unit in second and third row low-valent transition metal ion complexes may exhibit significant π-backdonation M → L0 structural effects.

12.
Inorg Chem ; 58(14): 9358-9367, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260277

RESUMO

A synthetic strategy for the preparation of novel doubly yldiide bridged iron(II) high spin dimers ([(µ2-C)FeL]2, L = N(SiMe3)2, Mesityl) has been developed. This includes the synthesis of ylide-iron(II) monomers [(Ylide)FeL2] via adduct formation. Subsequent self-protolysis at elevated temperatures by in situ deprotonation of the ylide ligands results in a dimerization reaction forming the desired bridging µ2-C yldiide ligands in [(µ2-C)FeL]2. The comprehensive structural and electronic analysis of dimers [(µ2-C)FeL]2, including NMR, Mössbauer, and X-ray spectroscopy, as well as X-ray crystallography, SQUID, and DFT calculations, confirm their high-spin FeII configurations. Interestingly, the Fe2C2 cores display very acute Fe-C-Fe angles (averaged: 78.6(2)°) resulting in short Fe···Fe distances (averaged: 2.588(2) Å). A remarkably strong antiferromagnetic coupling between the Fe centers has been identified. Strongly polarized Fe-C bonds are observed where the negative charge is mostly centered at the µ2-C yldiide ligands.

13.
Inorg Chem ; 58(8): 5111-5125, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30907584

RESUMO

In this work, a benzene-1,2-dithiolate (bdt) pentamethylcyclopentadienyl di-iron complex [Cp*Fe(µ-η2:η4-bdt)FeCp*] and its [Cp*Fe(bdt)(X)FeCp*] analogues (where X = N2H2, N2H3-, H-, NH2-, NHCH3-, or NO+) were investigated through spectroscopic and computational studies. These complexes are of relevance as model systems for dinitrogen activation in nitrogenase and share with its active site the presence of iron, sulfur ligands, and a very flexible electronic structure. On the basis of a combination of X-ray emission spectroscopy (XES), X-ray crystallography, Mössbauer, NMR, and EPR spectroscopy, the geometric and electronic structure of the series has been experimentally elucidated. All iron atoms were found to be in a local low-spin configuration. When no additional X ligand is bound, the bdt ligand is tilted and features a stabilizing π-interaction with one of the iron atoms. The number of lone-pair orbitals provided by the nitrogen-containing species is crucial to the overall electronic structure. When only one lone-pair is present and the iron atoms are bridged by one atom, a three-center bond occurs, and a direct Fe-Fe bond is absent. If the bridging atom provides two lone-pairs, then an Fe-Fe bond is formed. A recurring theme for all ligands is σ-donation into the unoccupied eg manifolds of both iron atoms and back-donation from the t2g manifolds into the ligand π* orbitals. The latter results in a weakening of the double bond of the bound ligand, and in the case of NO+, it results in a weakening of all bonds that comprise triple bond. The electron-rich thiolates further amplify this effect and can also serve as bases for proton binding. While the above observations have been made for the studied di-iron complexes, they may be of relevance for the active site in nitrogenase, where a similar N2 binding mode may occur allowing for the simultaneous weakening of the N2 σ bond and π bonds.

14.
Inorg Chem ; 57(19): 11948-11960, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30212188

RESUMO

Diarylamido, Q-N--Py (L-), complexes of ruthenium(II), trans-[(L-H+)RuII(PPh3)2Cl2] (1-H+) and trans-[(L-)RuII(PPh3)2(CO)Cl] (2), using N-(5-nitropyridin-2-yl)quinolin-8-amine (HL) as a ligand are disclosed (Q and Py refer to quinoline and 5-nitropyridine fragments). 1-H+ contains a zwitterionic amido ligand (Q-N--PyH+) that undergoes a concerted proton electron transfer (CPET) reaction in air, generating trans-[(L)Ru(PPh3)2Cl2] (1·CH2Cl2). The ground electronic state of 1 is delocalized as [(L-)RuIII ↔ (L•)RuII] (L• is an aminyl radical of type Q-N•-Py). The 1-H+/1 redox potential depends on the electrolytes, and the potentials are -1.57 and -1.40 V, respectively, in the presence of [N( n-Bu)4]PF6 and [N( n-Bu)4]Cl. The rate of 1-H+ → 1 conversion depends also on the medium and follows the order kD2O-CH2Cl2 > kH2O-CH2Cl2 > kCH2Cl2. In contrast, 2 containing the corresponding amido (L-) is stable and endures oxidation at 0.14 V, affording trans-[(L•)RuII(PPh3)2(CO)Cl] (2+). The electronic structures of the complexes were authenticated by single-crystal X-ray diffraction studies of HL, 1·CH2Cl2, and 2·(toluene), EPR spectroscopy, and density functional theory (DFT) calculations. Notably, the CQ-N (1.401(2) Å) and CPy-N (1.394(2) Å) lengths in 1·CH2Cl2 are relatively longer than the CQ-Namido (1.396(4) Å)and CPy-Namido (1.372(4) Å) lengths in 2·(toluene). Spin density obtained from DFT calculations scatters on both N and ruthenium atoms, revealing a delocalized state of 1. The notion was further confirmed by variable-temperature EPR spectra of a powder sample and CH2Cl2 solution, where the contributions of both [(L-)RuIII] and [(L•)RuII] components were detected. In contrast, 2+ is an aminyl radical complex of ruthenium(II), where the spin is dominantly localized on the ligand backbone (64%), particularly on N (27%). 2+ exhibits a strong EPR signal at g = 2.003. 1 and 2+ exhibit absorption bands at 560-630 and 830-840 nm, and the origins of these excitations were elucidated by TDDFT calculations on 1 and 2 in CH2Cl2.

15.
Inorg Chem ; 57(4): 2141-2148, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29384663

RESUMO

Iron tetraphenylporphyrins are prime candidates as catalysts for CO2 reduction. Yet, even after 40 years of research, fundamental questions about the electronic structure of their reduced states remain, in particular as to whether the reducing equivalents are stored at the iron center or at the porphyrin ligand. In this contribution, we address this question by a combination of resonance Raman spectroscopy and quantum chemistry. Analysis of the data allows for an unequivocal identification of the porphyrin as the redox active moiety. Additionally, determination of the spin state of iron is possible by comparing the characteristic shifts of spin and oxidation-state-sensitive marker bands in the Raman spectrum with calculations of planar porphyrin model structures.

16.
Inorg Chem ; 57(19): 12270-12281, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30222334

RESUMO

This work demonstrates that the acidity of nitroxyl (HNO) coordinated to a metal core is significantly influenced by its coordination environment. The possibility that NO- complexes may be the predominant species in physiological environments has implications in bioinorganic chemistry and biochemistry. This (apparently simple) result pushed us to delve into the basic aspects of HNO coordination chemistry. A series of three closely related {RuNO}6,7 complexes have been prepared and structurally characterized, namely [Ru(Me3[9]aneN3)(L2)(NO)]3+/2+, with L2 = 2,2'-bipyridine, 4,4'-dimethoxy-2,2'-bipyridine, and 2,2'-bipyrimidine. These species have also been thoroughly studied in solution, allowing for a systematic exploration of their electrochemical properties in a wide pH range, thus granting access and characterization of the elusive {RuNO}8 systems. Modulation of the electronic density in the {RuNO} fragment introduced by changing the bidentate coligand L2 produced only subtle structural modifications but affected dramatically other properties, most noticeably the redox potentials of the {RuNO}6,7 couples and the acidity of bound HNO, which spans over a range of almost three pH units. Controlling the acidity of coordinated HNO by the rational design of coordination compounds is of fundamental relevancy in the field of inorganic chemistry and also fuels the growing interest of the community in understanding the role that different HNO-derived species can play in biological systems.


Assuntos
Complexos de Coordenação/química , Óxidos de Nitrogênio/química , Rutênio/química , Ácidos/química , Química Bioinorgânica , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Oxirredução
17.
Inorg Chem ; 57(15): 9515-9530, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30044087

RESUMO

Understanding the detailed electronic structure of transition metal ions is essential in numerous areas of inorganic chemistry. In particular, the ability to map out the many particle d-d spectrum of a transition metal catalyst is key to understanding and predicting reactivity. However, from a practical perspective, there are often experimental limitations on the ability to determine the energetic ordering, and multiplicity of all the excited states. These limitations derive in part from parity and spin-selection rules, as well as from the limited energy range of many standard laboratory instruments. Herein, we demonstrate the ability of 2p3d resonant inelastic X-ray scattering (RIXS) to obtain detailed insights into the many particle spectrum of simple inorganic molecular iron complexes. The present study focuses on low-spin ferrous and ferric iron complexes, including [FeIII/II(tacn)2]3+/2+ and [FeIII/II(CN)6]3-/4-. This series thus allows us to assess the contribution of d-count and ligand donor type, by comparing the purely σ-donating tacn ligand to the π-accepting cyanide. In order to highlight the conceptual difference between RIXS and traditional optical spectroscopy, we compare first RIXS results with UV-vis and magnetic circular dichroism spectroscopy. We then highlight the ability of 2p3d RIXS to (1) separate d-d transitions from charge transfer transitions and (2) to determine the many particle d-d spectrum over a much wider energy range than is possible by optical spectroscopy. Our experimental results are correlated with semiempirical multiplet simulations and ab initio complete active space self-consistent field calculations in order to obtain detailed assignments of the excited states. These results show that Δ S = 1, and possibly Δ S = 2, transitions may be observed in 2p3d RIXS spectra. Hence, this methodology has great promise for future applications in all areas of transition metal inorganic chemistry.

18.
Inorg Chem ; 57(12): 7355-7361, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847108

RESUMO

Iron sulfur (FeS) proteins perform a wide range of biological functions including electron transfer and catalysis. Understanding the complex reactivity of these systems requires a detailed understanding of their electronic properties, which are encoded in the low-energy d-d excited states. Here we demonstrate that iron L-edge 2p3d resonant inelastic X-ray scattering (RIXS) can measure d-d excitation spectra in a series of monomeric, dimeric, and tetrameric FeS model complexes. RIXS provides advantages over traditional optical spectroscopies, because it is capable of measuring low-energy electronic excitations (0-10 000 cm-1) and spin-flip transitions. RIXS reveals the dense manifold of d-d excited states in dimeric [2Fe-2S] and tetrameric [MFe3S4]2+ (M = V or Mo) complexes resulting from covalency and exchange coupling. These results support recent ab initio theoretical predictions that FeS clusters possess a much greater number of low-lying excited states than predicted by model Hamiltonians.

19.
J Am Chem Soc ; 139(27): 9168-9177, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28598599

RESUMO

Iron complex [FeIII(N3)(MePy2tacn)](PF6)2 (1), containing a neutral triazacyclononane-based pentadentate ligand, and a terminally bound azide ligand has been prepared and spectroscopically and structurally characterized. Structural details, magnetic susceptibility data, and Mössbauer spectra demonstrate that 1 has a low-spin (S = 1/2) ferric center. X-ray diffraction analysis of 1 reveals remarkably short Fe-N (1.859 Å) and long FeN-N2 (1.246 Å) distances, while the FT-IR spectra show an unusually low N-N stretching frequency (2019 cm-1), suggesting that the FeN-N2 bond is particularly weak. Photolysis of 1 at 470 or 530 nm caused N2 elimination and generation of a nitrido species that on the basis of Mössbauer, magnetic susceptibility, EPR, and X-ray absorption in conjunction with density functional theory computational analyses is formulated as [FeV(N)(MePy2tacn)]2+ (2). Results indicate that 2 is a low-spin (S = 1/2) iron(V) species, which exhibits a short Fe-N distance (1.64 Å), as deduced from extended X-ray absorption fine structure analysis. Compound 2 is only stable at cryogenic (liquid N2) temperatures, and frozen solutions as well as solid samples decompose rapidly upon warming, producing N2. However, the high-valent compound could be generated in the gas phase, and its reactivity against olefins, sulfides, and substrates with weak C-H bonds studied. Compound 2 proved to be a powerful two-electron oxidant that can add the nitrido ligand to olefin and sulfide sites as well as oxidize cyclohexadiene substrates to benzene in a formal H2-transfer process. In summary, compound 2 constitutes the first case of an octahedral FeV(N) species prepared within a neutral ligand framework and adds to the few examples of FeV species that could be spectroscopically and chemically characterized.

20.
Inorg Chem ; 56(5): 3102-3118, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28225611

RESUMO

The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh4)2[Co(SPh)4] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh)4]2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh)4]2-: (PPh4)2[Co(SPh)4] (1) and (NEt4)2[Co(SPh)4] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh)4]2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm-1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm-1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA