Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267096

RESUMO

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

2.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178587

RESUMO

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Proteínas Nucleares/metabolismo
3.
Mol Cell ; 51(5): 691-701, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23973328

RESUMO

The Plk1-interacting checkpoint helicase (PICH) protein localizes to ultrafine anaphase bridges (UFBs) in mitosis alongside a complex of DNA repair proteins, including the Bloom's syndrome protein (BLM). However, very little is known about the function of PICH or how it is recruited to UFBs. Using a combination of microfluidics, fluorescence microscopy, and optical tweezers, we have defined the properties of PICH in an in vitro model of an anaphase bridge. We show that PICH binds with a remarkably high affinity to duplex DNA, resulting in ATP-dependent protein translocation and extension of the DNA. Most strikingly, the affinity of PICH for binding DNA increases with tension-induced DNA stretching, which mimics the effect of the mitotic spindle on a UFB. PICH binding also appears to diminish force-induced DNA melting. We propose a model in which PICH recognizes and stabilizes DNA under tension during anaphase, thereby facilitating the resolution of entangled sister chromatids.


Assuntos
Anáfase/genética , DNA Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cromátides/metabolismo , DNA Helicases/química , DNA Helicases/genética , Humanos , Microscopia de Fluorescência/métodos , Ácidos Nucleicos Heteroduplexes/metabolismo , Nucleossomos/metabolismo , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
Mol Cell ; 41(4): 398-408, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329878

RESUMO

Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.


Assuntos
Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Acetilação , Sítios de Ligação , Replicação do DNA , Chaperonas de Histonas/genética , Histonas/genética , Modelos Biológicos , Nucleossomos/metabolismo
5.
Mol Cell ; 41(1): 46-55, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21211722

RESUMO

Poly(ADP-ribosyl)ation plays a major role in DNA repair, where it regulates chromatin relaxation as one of the critical events in the repair process. However, the molecular mechanism by which poly(ADP-ribose) modulates chromatin remains poorly understood. Here we identify the poly(ADP-ribose)-regulated protein APLF as a DNA-damage-specific histone chaperone. APLF preferentially binds to the histone H3/H4 tetramer via its C-terminal acidic motif, which is homologous to the motif conserved in the histone chaperones of the NAP1L family (NAP1L motif). We further demonstrate that APLF exhibits histone chaperone activities in a manner that is dependent on its acidic domain and that the NAP1L motif is critical for the repair capacity of APLF in vivo. Finally, we identify structural analogs of APLF in lower eukaryotes with the ability to bind histones and localize to the sites of DNA-damage-induced poly(ADP-ribosyl)ation. Collectively, these findings define the involvement of histone chaperones in poly(ADP-ribose)-regulated DNA repair reactions.


Assuntos
Reparo do DNA , Chaperonas de Histonas/fisiologia , Fosfoproteínas/fisiologia , Motivos de Aminoácidos , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Eucariotos/genética , Células HeLa , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/fisiologia , Homologia de Sequência , tRNA Metiltransferases
6.
PLoS Genet ; 12(3): e1005940, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27019336

RESUMO

Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.


Assuntos
Adenosina Trifosfatases/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Nucleossomos/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila , Regulação da Expressão Gênica , Células HeLa , Humanos , Nucleossomos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
7.
Cell Rep ; 42(1): 111996, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680776

RESUMO

Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells. This shows that most proteins regain access within minutes to newly replicated DNA. In contrast, 25% of the identified proteins do not, and this delay cannot be inferred from their known function or nuclear abundance. Instead, chromatin organization and G1 phase entry affect their reassociation. Finally, DNA replication not only disrupts but also promotes recruitment of transcription factors and chromatin remodelers, providing a significant advance in understanding how DNA replication could contribute to programmed changes of cell memory.


Assuntos
Cromatina , Proteômica , Humanos , Replicação do DNA , Eucromatina , Heterocromatina , DNA
8.
Cell Rep ; 37(5): 109943, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731603

RESUMO

The ARID1A subunit of SWI/SNF chromatin remodeling complexes is a potent tumor suppressor. Here, a degron is applied to detect rapid loss of chromatin accessibility at thousands of loci where ARID1A acts to generate accessible minidomains of nucleosomes. Loss of ARID1A also results in the redistribution of the coactivator EP300. Co-incident EP300 dissociation and lost chromatin accessibility at enhancer elements are highly enriched adjacent to rapidly downregulated genes. In contrast, sites of gained EP300 occupancy are linked to genes that are transcriptionally upregulated. These chromatin changes are associated with a small number of genes that are differentially expressed in the first hours following loss of ARID1A. Indirect or adaptive changes dominate the transcriptome following growth for days after loss of ARID1A and result in strong engagement with cancer pathways. The identification of this hierarchy suggests sites for intervention in ARID1A-driven diseases.


Assuntos
Proteínas de Ligação a DNA/deficiência , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fatores de Transcrição/deficiência , Transcrição Gênica , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Nucleossomos/genética , Lesões Pré-Cancerosas/genética , Proteólise , Fatores de Tempo , Fatores de Transcrição/genética
9.
Elife ; 62017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332978

RESUMO

The yeast Chd1 protein acts to position nucleosomes across genomes. Here, we model the structure of the Chd1 protein in solution and when bound to nucleosomes. In the apo state, the DNA-binding domain contacts the edge of the nucleosome while in the presence of the non-hydrolyzable ATP analog, ADP-beryllium fluoride, we observe additional interactions between the ATPase domain and the adjacent DNA gyre 1.5 helical turns from the dyad axis of symmetry. Binding in this conformation involves unravelling the outer turn of nucleosomal DNA and requires substantial reorientation of the DNA-binding domain with respect to the ATPase domains. The orientation of the DNA-binding domain is mediated by sequences in the N-terminus and mutations to this part of the protein have positive and negative effects on Chd1 activity. These observations indicate that the unfavorable alignment of C-terminal DNA-binding region in solution contributes to an auto-inhibited state.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
Biochem Soc Symp ; (73): 109-19, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16626292

RESUMO

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


Assuntos
Nucleossomos/genética , Nucleossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Variação Genética , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
11.
Oncogene ; 23(50): 8185-95, 2004 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-15378006

RESUMO

Smad nuclear interacting protein 1 (SNIP1) is an evolutionarily conserved protein containing a forkhead-associated (FHA) domain that regulates gene expression through interactions with multiple transcriptional regulators. Here, we have used short interfering RNAs (siRNAs) to knockdown SNIP1 expression in human cell lines. Surprisingly, we found that reduction in SNIP1 levels resulted in significantly reduced cell proliferation and accumulation of cells in the G1 phase of the cell cycle. Consistent with this result, we observed that cyclin D1 protein and mRNA levels were reduced. Moreover, SNIP1 depletion results in inhibition of cyclin D1 promoter activity in a manner dependent upon a previously characterized binding site for the AP-1 transcription factor family. SNIP1 itself is induced upon serum stimulation immediately prior to cyclin D1 expression. These effects were independent of the tumour suppressors p53 and retinoblastoma (Rb), but were consistent with an interaction with BRG1, a component of the ATP-dependent chromatin remodelling complex, Swi/Snf. These results define both a new function for SNIP1 and identify a previously unrecognized regulator of the cell cycle and cyclin D1 expression.


Assuntos
Divisão Celular/fisiologia , Ciclina D1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sequência de Bases , Ciclina D1/genética , Primers do DNA , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Transativadores/metabolismo
12.
J Mol Biol ; 422(1): 3-17, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22575888

RESUMO

The NuRD (nucleosome remodeling and deacetylase) complex serves as a crucial epigenetic regulator of cell differentiation, proliferation, and hematopoietic development by coupling the deacetylation and demethylation of histones, nucleosome mobilization, and the recruitment of transcription factors. The core nucleosome remodeling function of the mammalian NuRD complex is executed by the helicase-domain-containing ATPase CHD4 (Mi-2ß) subunit, which also contains N-terminal plant homeodomain (PHD) and chromo domains. The mode of regulation of chromatin remodeling by CHD4 is not well understood, nor is the role of its PHD and chromo domains. Here, we use small-angle X-ray scattering, nucleosome binding ATPase and remodeling assays, limited proteolysis, cross-linking, and tandem mass spectrometry to propose a three-dimensional structural model describing the overall shape and domain interactions of CHD4 and discuss the relevance of these for regulating the remodeling of chromatin by the NuRD complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Modelos Biológicos , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Proteólise
13.
Science ; 325(5945): 1240-3, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19661379

RESUMO

Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5'-diphosphate (ADP)-ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage-response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)-dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Dano ao DNA , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nucleossomos/metabolismo , Fleomicinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Estrutura Terciária de Proteína , Radiação Ionizante , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
EMBO J ; 23(2): 343-53, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14726954

RESUMO

Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.


Assuntos
Histonas/química , Nucleossomos/química , Cloreto de Cálcio/farmacologia , DNA/química , DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Cloreto de Magnésio/farmacologia , Modelos Moleculares , Movimento (Física) , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
15.
J Biol Chem ; 279(7): 5263-7, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14630927

RESUMO

Axin is a negative regulator of the Wnt pathway essential for down-regulation of beta-catenin. Axin has been considered so far as a cytoplasmic protein. Here we show that, although cytoplasmic at steady state, Axin shuttles in fact in and out of the nucleus; Axin accumulates in the nucleus of cells treated with leptomycin B, a specific inhibitor of the CRM1-mediated nuclear export pathway and is efficiently exported from Xenopus oocyte nuclei in a RanGTP- and CRM1-dependent manner. We have characterized the sequence requirement for export and identified two export domains, which do not contain classical nuclear export consensus sequences, and we show that Axin binds directly to the export factor CRM1 in the presence of RanGTP.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Citoplasmáticos e Nucleares , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Proteína Axina , Linhagem Celular , Regulação para Baixo , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica , Humanos , Carioferinas/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo , Proteínas Wnt , Xenopus , Proteínas de Xenopus , beta Catenina , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
16.
Proc Natl Acad Sci U S A ; 99(8): 5267-70, 2002 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11929971

RESUMO

Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. Sialylation is crucial for a variety of cellular functions, such as cell adhesion or signal recognition, and regulates the biological stability of glycoproteins. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. We report that inactivation of the UDP-GlcNAc 2-epimerase by gene targeting causes early embryonic lethality in mice, thereby emphasizing the fundamental role of this bifunctional enzyme and sialylation during development. The need of UDP-GlcNAc 2-epimerase for a defined sialylation process is exemplified with the polysialylation of the neural cell adhesion molecule in embryonic stem cells.


Assuntos
Carboidratos Epimerases/química , Carboidratos Epimerases/genética , Carboidratos/química , Proteínas de Escherichia coli , Ácidos Siálicos/química , Alelos , Animais , Southern Blotting , Western Blotting , Catálise , Embrião de Mamíferos/citologia , Citometria de Fluxo , Marcação de Genes , Genótipo , Heterozigoto , Homozigoto , Camundongos , Modelos Biológicos , Modelos Genéticos , Testes de Precipitina , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA