Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 11(8): 303-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22493178

RESUMO

Induction of a pluripotent state in somatic cells through nuclear reprogramming has ushered in a new era of regenerative medicine. Heterogeneity and varied differentiation potentials among induced pluripotent stem cell (iPSC) lines are, however, complicating factors that limit their usefulness for disease modeling, drug discovery, and patient therapies. Thus, there is an urgent need to develop nonmutagenic rapid throughput methods capable of distinguishing among putative iPSC lines of variable quality. To address this issue, we have applied a highly specific chemoproteomic targeting strategy for de novo discovery of cell surface N-glycoproteins to increase the knowledge-base of surface exposed proteins and accessible epitopes of pluripotent stem cells. We report the identification of 500 cell surface proteins on four embryonic stem cell and iPSCs lines and demonstrate the biological significance of this resource on mouse fibroblasts containing an oct4-GFP expression cassette that is active in reprogrammed cells. These results together with immunophenotyping, cell sorting, and functional analyses demonstrate that these newly identified surface marker panels are useful for isolating iPSCs from heterogeneous reprogrammed cultures and for isolating functionally distinct stem cell subpopulations.


Assuntos
Separação Celular/métodos , Glicoproteínas/análise , Imunofenotipagem/métodos , Proteínas de Membrana/análise , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos , Animais , Células Cultivadas , Receptor gp130 de Citocina/análise , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Espectrometria de Massas , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Microscopia Confocal , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Teratoma/metabolismo , Teratoma/patologia
2.
Genes Cancer ; 2(5): 538-49, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21901167

RESUMO

Neuroblastoma is a pediatric solid tumor that can be stratified into stroma-rich and stroma-poor histological subgroups. The stromal compartment of neuroblastoma is composed mostly of Schwann cells, and they play critical roles in the differentiation, survival, and angiogenic responses of tumor cells. In certain neuroblastoma cell lines, the coexistence of neuroblastic N-type and substrate-adherent S-type is frequently observed. One such cell line, SK-N-SH, harbors a F1174L oncogenic mutation in the anaplastic lymphoma kinase (ALK) gene. Treatment of SK-N-SH with an ALK chemical inhibitor, TAE684, resulted in the outgrowth of S-type cells that expressed the Schwann cell marker, S100α6. Nucleotide sequencing analysis of these TAE684-resistant (TR) sublines revealed the presence of the ALK F1174L mutation, suggesting their tumor origin, although ALK protein was not detected. Consistent with these findings, TR cells displayed approximately 9-fold higher IC(50) values than N-type cells. Also, unlike N-type cells, TR cells have readily detectable phosphorylated STAT3 but weaker phosphorylated AKT. Under coculture conditions, TR cells conferred survival to N-type cells against the apoptotic effect of TAE684. Cocultivation also greatly enhanced the overall phosphorylation of STAT3 and its transcriptional activity in N-type cells. Finally, conditioned medium from TR clones enhanced cell viability of N-type cells, and this effect was phosphatidylinositol 3-kinase dependent. Taken together, these results demonstrate the ability of tumor-derived S-type cells in protecting N-type cells against the apoptotic effect of an ALK kinase inhibitor through upregulating prosurvival signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA