Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 37(6): e5122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369653

RESUMO

Amide proton transfer weighted (APTw) imaging enables in vivo assessment of tissue-bound mobile proteins and peptides through the detection of chemical exchange saturation transfer. Promising applications of APTw imaging have been shown in adult brain tumors. As pediatric brain tumors differ from their adult counterparts, we investigate the radiological appearance of pediatric brain tumors on APTw imaging. APTw imaging was conducted at 3 T. APTw maps were calculated using magnetization transfer ratio asymmetry at 3.5 ppm. First, the repeatability of APTw imaging was assessed in a phantom and in five healthy volunteers by calculating the within-subject coefficient of variation (wCV). APTw images of pediatric brain tumor patients were analyzed retrospectively. APTw levels were compared between solid tumor tissue and normal-appearing white matter (NAWM) and between pediatric high-grade glioma (pHGG) and pediatric low-grade glioma (pLGG) using t-tests. APTw maps were repeatable in supratentorial and infratentorial brain regions (wCV ranged from 11% to 39%), except those from the pontine region (wCV between 39% and 50%). APTw images of 23 children with brain tumor were analyzed (mean age 12 years ± 5, 12 male). Significantly higher APTw values are present in tumor compared with NAWM for both pHGG and pLGG (p < 0.05). APTw values were higher in pLGG subtype pilocytic astrocytoma compared with other pLGG subtypes (p < 0.05). Non-invasive characterization of pediatric brain tumor biology with APTw imaging could aid the radiologist in clinical decision-making.


Assuntos
Amidas , Neoplasias Encefálicas , Imagens de Fantasmas , Prótons , Humanos , Criança , Masculino , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Adolescente , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/patologia , Reprodutibilidade dos Testes , Pré-Escolar
2.
NMR Biomed ; : e5195, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845018

RESUMO

The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.

3.
J Magn Reson Imaging ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058248

RESUMO

BACKGROUND: Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of 2H-labeled substrates. DMI after [6,6'-2H2]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-2H2]glucose doses on DMI brain data is not well known. PURPOSE: To investigate three different [6,6'-2H2]glucose doses for DMI in the human brain at 7 T. STUDY TYPE: Prospective. POPULATION: Six healthy participants (age: 28 ± 8 years, male/female: 3/3). FIELD STRENGTH/SEQUENCE: 7 T, 3D 2H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence. ASSESSMENT: Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-2H2]glucose on two occasions and underwent consecutive 2H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma 2H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-2H2]glucose (part-2). STATISTICAL TEST: Mean plasma 2H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain 2H-Glc and brain 2H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05. RESULTS: Between 60 and 100 minutes after ingesting [6,6'-2H2]glucose, plasma 2H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain 2H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain 2H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma 2H-Glc APE, brain 2H-Glc, and brain 2H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-2H2]glucose. DATA CONCLUSION: Brain 2H-Glucose and brain 2H-Glutamate/Glutamine showed to be [6,6'-2H2]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, 2H-Glucose and 2H-Glutamate/Glutamine signals in the brain. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA