Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(14): 3595-3597, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34242561

RESUMO

In this issue of Cell, Casanova and colleagues examine three family members with a mutation that results in deficiency of the T cell co-stimulatory molecule CD28. These patients exhibit clinical symptoms due to human papillomavirus-2 and -4 infections, show increased levels of Epstein-Barr virus and cytomegalovirus in the blood, and respond poorly to vaccines.


Assuntos
Alphapapillomavirus , Infecções por Vírus Epstein-Barr , Antígenos CD28/genética , Citomegalovirus/genética , Herpesvirus Humano 4/genética , Humanos
2.
Cell ; 169(5): 862-877.e17, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28502771

RESUMO

Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.


Assuntos
Vacina contra Herpes Zoster/imunologia , Imunidade Adaptativa , Adulto , Idoso , Envelhecimento , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fosfatos de Inositol/imunologia , Estudos Longitudinais , Masculino , Metabolômica , Pessoa de Meia-Idade , Caracteres Sexuais , Esteróis/metabolismo , Carga Viral
3.
Immunity ; 51(6): 1043-1058.e4, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31810882

RESUMO

T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Feminino , Granzimas/genética , Granzimas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética
4.
Nature ; 610(7930): 173-181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171288

RESUMO

Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Subunidade gama Comum de Receptores de Interleucina , Interleucina-2/imunologia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2 , Subunidade beta de Receptor de Interleucina-2 , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fator 1 de Transcrição de Linfócitos T
5.
Nature ; 597(7875): 274-278, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33208941

RESUMO

Tumours often contain B cells and plasma cells but the antigen specificity of these intratumoral B cells is not well understood1-8. Here we show that human papillomavirus (HPV)-specific B cell responses are detectable in samples from patients with HPV-positive head and neck cancers, with active production of HPV-specific IgG antibodies in situ. HPV-specific antibody secreting cells (ASCs) were present in the tumour microenvironment, with minimal bystander recruitment of influenza-specific cells, suggesting a localized and antigen-specific ASC response. HPV-specific ASC responses correlated with titres of plasma IgG and were directed against the HPV proteins E2, E6 and E7, with the most dominant response against E2. Using intratumoral B cells and plasma cells, we generated several HPV-specific human monoclonal antibodies, which exhibited a high degree of somatic hypermutation, consistent with chronic antigen exposure. Single-cell RNA sequencing analyses detected activated B cells, germinal centre B cells and ASCs within the tumour microenvironment. Compared with the tumour parenchyma, B cells and ASCs were preferentially localized in the tumour stroma, with well-formed clusters of activated B cells indicating ongoing germinal centre reactions. Overall, we show that antigen-specific activated and germinal centre B cells as well as plasma cells can be found in the tumour microenvironment. Our findings provide a better understanding of humoral immune responses in human cancer and suggest that tumour-infiltrating B cells could be harnessed for the development of therapeutic agents.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Linfócitos do Interstício Tumoral/imunologia , Papillomaviridae/imunologia , Microambiente Tumoral/imunologia , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Linfócitos B/metabolismo , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/virologia , Separação Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neoplasias de Cabeça e Pescoço/sangue , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Infecções por Papillomavirus/sangue , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , RNA-Seq , Análise de Célula Única , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Transcriptoma
6.
Nature ; 597(7875): 279-284, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471285

RESUMO

T cells are important in tumour immunity but a better understanding is needed of the differentiation of antigen-specific T cells in human cancer1,2. Here we studied CD8 T cells in patients with human papillomavirus (HPV)-positive head and neck cancer and identified several epitopes derived from HPV E2, E5 and E6 proteins that allowed us to analyse virus-specific CD8 T cells using major histocompatibility complex (MHC) class I tetramers. HPV-specific CD8 T cells expressed PD-1 and were detectable in the tumour at levels that ranged from 0.1% to 10% of tumour-infiltrating CD8 T lymphocytes (TILs) for a given epitope. Single-cell RNA-sequencing analyses of tetramer-sorted HPV-specific PD-1+ CD8 TILs revealed three transcriptionally distinct subsets. One subset expressed TCF7 and other genes associated with PD-1+ stem-like CD8 T cells that are critical for maintaining T cell responses in conditions of antigen persistence. The second subset expressed more effector molecules, representing a transitory cell population, and the third subset was characterized by a terminally differentiated gene signature. T cell receptor clonotypes were shared between the three subsets and pseudotime analysis suggested a hypothetical differentiation trajectory from stem-like to transitory to terminally differentiated cells. More notably, HPV-specific PD-1+TCF-1+ stem-like TILs proliferated and differentiated into more effector-like cells after in vitro stimulation with the cognate HPV peptide, whereas the more terminally differentiated cells did not proliferate. The presence of functional HPV-specific PD-1+TCF-1+CD45RO+ stem-like CD8 T cells with proliferative capacity shows that the cellular machinery to respond to PD-1 blockade exists in HPV-positive head and neck cancer, supporting the further investigation of PD-1 targeted therapies in this malignancy. Furthermore, HPV therapeutic vaccination efforts have focused on E6 and E7 proteins; our results suggest that E2 and E5 should also be considered for inclusion as vaccine antigens to elicit tumour-reactive CD8 T cell responses of maximal breadth.


Assuntos
Alphapapillomavirus/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Células-Tronco/citologia , Alphapapillomavirus/isolamento & purificação , Linfócitos T CD8-Positivos/classificação , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/imunologia , Humanos , Linfócitos do Interstício Tumoral/classificação , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/imunologia , RNA-Seq , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Células-Tronco/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo , Linfócitos T/imunologia , Transcrição Gênica
7.
J Virol ; 97(1): e0155622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541799

RESUMO

Increased demand for novel, highly effective vaccination strategies necessitates a better understanding of long-lived memory CD8 T cell differentiation. To achieve this understanding, we used the mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. We reexamined classical memory CD8 T cell subsets and performed in-depth, longitudinal analysis of their phenotype, transcriptional programming, and anatomic location within the spleen. All analyses were performed at multiple time points from 8 days to 1 year postinfection. Memory subsets are conventionally defined by their expression of KLRG1 and IL-7Rα, as follows: KLRG1+IL-7Rα- terminal effectors (TEs) and KLRG1-IL-7Rα+ memory precursors (MPs). But we also characterized a third KLRG1+IL-7Rα+ subset which we refer to as KLRG1+ MPs. In these analyses, we defined a comprehensive memory phenotype that is associated with higher levels of CD28 expression. We also demonstrated that MPs, KLRG1+ MPs, and TEs have distinct localization programs within the spleen. We found that MPs became preferentially enriched in the white pulp as early as 1 to 2 weeks postinfection, and their predominance in the white pulp was maintained throughout the course of a year. On the other hand, KLRG1+ MPs and TEs localized to the red pulp just as early, and they consistently localized to the red pulp thereafter. These findings indicate that location may be crucial for memory formation and that white pulp-derived signals may contribute to long-term memory survival. Achieving robust memory responses following vaccination may require more deliberate consideration of which memory phenotypes are induced, as well as where they traffic, as these factors could impact their longevity. IMPORTANCE CD8 T cells play a critical role in viral immunity and it is important to understand how memory cells are formed and what processes lead to their long-term maintenance. Here, we use a mouse model of acute infection to perform an in-depth, longitudinal analysis of memory CD8 T cell differentiation, examining the phenotype and location of memory cells out to 1 year postinfection.


Assuntos
Coriomeningite Linfocítica , Subpopulações de Linfócitos T , Animais , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Fenótipo , Vacinação , Antígenos CD28/genética , Transcriptoma , Antígenos de Superfície/genética , Vacinas Virais/imunologia
8.
Immunity ; 42(2): 367-378, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25680276

RESUMO

T cell dysfunction is well documented during chronic viral infections but little is known about functional abnormalities in humoral immunity. Here we report that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) exhibit a severe defect in Fcγ-receptor (FcγR)-mediated antibody effector functions. Using transgenic mice expressing human CD20, we found that chronic LCMV infection impaired the depletion of B cells with rituximab, an anti-CD20 antibody widely used for the treatment of B cell lymphomas. In addition, FcγR-dependent activation of dendritic cells by agonistic anti-CD40 antibody was compromised in chronically infected mice. These defects were due to viral antigen-antibody complexes and not the chronic infection per se, because FcγR-mediated effector functions were normal in persistently infected mice that lacked LCMV-specific antibodies. Our findings have implications for the therapeutic use of antibodies and suggest that high levels of pre-existing immune complexes could limit the effectiveness of antibody therapy in humans.


Assuntos
Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Depleção Linfocítica , Coriomeningite Linfocítica/imunologia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/biossíntese , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Hipergamaglobulinemia/imunologia , Fatores Imunológicos/farmacologia , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rituximab
9.
J Virol ; 96(9): e0002622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404084

RESUMO

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Assuntos
Anticorpos Antivirais , Coriomeningite Linfocítica , Células B de Memória , Rituximab , Animais , Anticorpos Antivirais/sangue , Humanos , Imunidade Humoral , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Células B de Memória/citologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Plasmócitos/citologia , Infecções por Rhabdoviridae/imunologia , Rituximab/farmacologia
10.
Nature ; 552(7685): 404-409, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236683

RESUMO

Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Desdiferenciação Celular , Memória Imunológica , Animais , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Epigênese Genética , Feminino , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32759317

RESUMO

Recent studies on chronic viral infections have defined a novel programmed cell death 1-positive (PD-1+) T cell factor 1-positive (TCF1+) stem-like CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T cells. In this study, we performed T cell receptor beta (TCRß) sequencing of virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection to examine the TCR diversity and lineage relationship of these two functionally distinct subsets. We found that >95% of the TCR repertoire of the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The TCR repertoires of both CD8 T cell subsets were composed mostly of a few dominant clonotypes, but there was slightly more breadth and diversity in the stem-like CD8 T cells than their exhausted counterpart (∼40 versus ∼15 GP33+ clonotypes; ∼20 versus ∼7 GP276+ clonotypes). Interestingly, the breadth of the TCR repertoire was broader during the early stages (day 8) of the chronic infection than the later stages (days 45 to 60), showing that there was a narrowing of the TCR repertoire during chronic infection (∼2-fold GP33+ and GP276+ stem-like subset; ∼10-fold GP33+ and ∼5-fold GP276+ exhausted subset). In contrast, during acute LCMV infection, the TCR repertoire was much broader in both GP33-specific effector (∼160 clonotypes) and memory CD8 T cells (∼160 clonotypes). Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is broad and remains stable after acute LCMV infection, but it contracts and is narrower during chronic infection. Our study also shows that the repertoire of the exhausted CD8 T cell subset is almost completely derived from the stem-like CD8 T cell subset during established chronic LCMV infection.IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepatitis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited breadth and diversity. How these repertoires change and are maintained throughout the chronic infection are unknown. We thus characterized the LCMV-specific CD8 TCR repertoires of stem-like and terminally exhausted subsets generated during chronic LCMV infections. During chronic LCMV infections, the repertoires started as diverse but became more clonal at the late time point. Further, the exhausted subset was composed of dominant clonotypes that were shared with the stem-like subset. Together, we demonstrate that the TCR repertoire contracts over time and is almost exclusively derived from the stem-like subset late during the persistent viral infection. Our data suggest that dominant clonotypes in the exhausted subset are derived from a diverse pool of stem-like clonotypes, which may be contributing to the clonality observed during chronic viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Doença Crônica , Feminino , Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Receptores de Antígenos de Linfócitos T/genética
12.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321817

RESUMO

Childhood immunization with the live-attenuated varicella-zoster virus (VZV) vaccine induces protective immune responses. Routine VZV vaccination started only 2 decades ago, and thus, there are few studies examining the longevity of vaccine-induced immunity. Here, we analyzed the quantity of VZV-specific plasma cells (PCs) and CD4 T cells in the bone marrow (BM) of healthy young adults (n = 15) following childhood VZV immunization. Long-lived BM resident plasma cells constitutively secrete antibodies, and we detected VZV-specific PCs in the BM of all subjects. Anti-VZV plasma antibody titers correlated positively with the number of VZV-specific BM PCs. Furthermore, we quantified the number of interferon gamma (IFN-γ)-producing CD4 T cells specific for VZV glycoprotein E and all other structural and nonstructural VZV proteins in both BM and blood (peripheral blood mononuclear cells [PBMCs]). The frequency of VZV-specific IFN-γ-producing CD4 T cells was significantly higher in PBMCs than BM. Our study shows that VZV-specific PCs and VZV-specific CD4 memory T cells persist up to 20 years after vaccination. These findings indicate that childhood VZV vaccination can elicit long-lived immune memory responses in the bone marrow.IMPORTANCE Childhood varicella-zoster virus (VZV) immunization induces immune memory responses that protect against primary VZV infection, chicken pox. In the United States, routine childhood VZV vaccination was introduced only 2 decades ago. Hence, there is limited information on the longevity of B and CD4 T cell memory, which are both important for protection. Here, we showed in 15 healthy young adults that VZV-specific B and CD4 T cell responses are detectable in bone marrow (BM) and blood up to 20 years after vaccination. Specifically, we measured antibody-secreting plasma cells in the BM and VZV-specific CD4 T cells in BM and blood. These findings suggest that childhood VZV vaccination induces long-lived immunity.


Assuntos
Vacina contra Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Plasmócitos/imunologia , Anticorpos Antivirais/imunologia , Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Feminino , Herpes Zoster/imunologia , Humanos , Imunidade Celular/imunologia , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Vacinação , Vacinas Atenuadas/imunologia , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 115(17): 4357-4362, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632190

RESUMO

The ability to analyze and isolate cells based on the expression of specific surface markers has increased our understanding of cell biology and produced numerous applications for biomedicine. However, established cell-sorting platforms rely on labels that are limited in number due to biophysical constraints, such as overlapping emission spectra of fluorophores in FACS. Here, we establish a framework built on a system of orthogonal and extensible DNA gates for multiplexed cell sorting. These DNA gates label target cell populations by antibodies to allow magnetic bead isolation en masse and then selectively unlock by strand displacement to sort cells. We show that DNA gated sorting (DGS) is triggered to completion within minutes on the surface of cells and achieves target cell purity, viability, and yield equivalent to that of commercial magnetic sorting kits. We demonstrate multiplexed sorting of three distinct immune cell populations (CD8+, CD4+, and CD19+) from mouse splenocytes to high purity and show that recovered CD8+ T cells retain proliferative potential and target cell-killing activity. To broaden the utility of this platform, we implement a double positive sorting scheme using DNA gates on peptide-MHC tetramers to isolate antigen-specific CD8+ T cells from mice infected with lymphocytic choriomeningitis virus (LCMV). DGS can potentially be expanded with fewer biophysical constraints to large families of DNA gates for applications that require analysis of complex cell populations, such as host immune responses to disease.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Proliferação de Células , Citometria de Fluxo/métodos , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Camundongos
14.
Curr Top Microbiol Immunol ; 423: 119-150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790076

RESUMO

Antibodies are the key effector molecules of the humoral immune system providing long-term protective immunity against a wide range of pathogens and regulating immune responses. Traditionally, antibody-mediated protection against microbes was thought to be mainly a result of neutralizing Fab-antigen interaction; however, an increasing number of studies show the importance of proper FcR engagement for the protective capacity of antimicrobial antibodies. In this chapter, we review FcR-mediated effector functions contributing to antimicrobial protection in a direct and indirect manner. Furthermore, we highlight recent findings about the important role of Fc-FcR interactions for antimicrobial protection in vivo and provide examples demonstrating the crucial role of proper FcR engagement for antibody-mediated protection against viruses, bacteria, fungi, and parasites.


Assuntos
Anti-Infecciosos/imunologia , Infecções/imunologia , Receptores Fc/imunologia , Antibacterianos/imunologia , Anticorpos/imunologia , Humanos , Infecções/microbiologia , Infecções/parasitologia , Infecções/virologia
15.
16.
Proc Natl Acad Sci U S A ; 114(19): 4993-4998, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28446615

RESUMO

Exhausted T cells in chronic infections and cancer have sustained expression of the inhibitory receptor programmed cell death 1 (PD-1). Therapies that block the PD-1 pathway have shown promising clinical results in a significant number of advanced-stage cancer patients. Nonetheless, a better understanding of the immunological responses induced by PD-1 blockade in cancer patients is lacking. Identification of predictive biomarkers is a priority in the field, but whether peripheral blood analysis can provide biomarkers to monitor or predict patients' responses to treatment remains to be resolved. In this study, we analyzed longitudinal blood samples from advanced stage non-small cell lung cancer (NSCLC) patients (n = 29) receiving PD-1-targeted therapies. We detected an increase in Ki-67+ PD-1+ CD8 T cells following therapy in ∼70% of patients, and most responses were induced after the first or second treatment cycle. This T-cell activation was not indiscriminate because we observed only minimal effects on EBV-specific CD8 T cells, suggesting that responding cells may be tumor specific. These proliferating CD8 T cells had an effector-like phenotype (HLA-DR+, CD38+, Bcl-2lo), expressed costimulatory molecules (CD28, CD27, ICOS), and had high levels of PD-1 and coexpression of CTLA-4. We found that 70% of patients with disease progression had either a delayed or absent PD-1+ CD8 T-cell response, whereas 80% of patients with clinical benefit exhibited PD-1+ CD8 T-cell responses within 4 wk of treatment initiation. Our results suggest that peripheral blood analysis may provide valuable insights into NSCLC patients' responses to PD-1-targeted therapies.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares , Ativação Linfocitária/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Nivolumabe
17.
Clin Infect Dis ; 69(2): 348-351, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30668661

RESUMO

An immunocompetent adult received corticosteroids for chest pain, which later was clinically found to be herpes zoster (HZ). She developed severe disease and rapid viral dissemination that elicited an exceptionally strong varicella zoster virus-specific B-cell and CD8 T-cell response. Clinicians should consider atypical HZ presentation prior to corticosteroid administration.


Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Encefalite por Varicela Zoster/imunologia , Herpesvirus Humano 3/imunologia , Feminino , Humanos , Adulto Jovem
18.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743372

RESUMO

Herpes zoster (HZ) (shingles) is the clinical manifestation of varicella-zoster virus (VZV) reactivation. HZ typically develops as people age, due to decreased cell-mediated immunity. However, the importance of antibodies for immunity against HZ prevention remains to be understood. The goal of this study was to examine the breadth and functionality of VZV-specific antibodies after vaccination with a live attenuated HZ vaccine (Zostavax). Direct enumeration of VZV-specific antibody-secreting cells (ASCs) via enzyme-linked immunosorbent spot assay (ELISPOT assay) showed that Zostavax can induce both IgG and IgA ASCs 7 days after vaccination but not IgM ASCs. The VZV-specific ASCs range from 33 to 55% of the total IgG ASCs. Twenty-five human VZV-specific monoclonal antibodies (MAbs) were cloned and characterized from single-cell-sorted ASCs of five subjects (>60 years old) who received Zostavax. These MAbs had an average of ∼20 somatic hypermutations per VH gene, similar to those seen after seasonal influenza vaccination. Fifteen of the 25 MAbs were gE specific, whereas the remaining MAbs were gB, gH, or gI specific. The most potent neutralizing antibodies were gH specific and were also able to inhibit cell-to-cell spread of the virus in vitro Most gE-specific MAbs were able to neutralize VZV, but they required the presence of complement and were unable to block cell-to-cell spread. These data indicate that Zostavax induces a memory B cell recall response characterized by anti-gE > anti-gI > anti-gB > anti-gH antibodies. While antibodies to gH could be involved in limiting the spread of VZV upon reactivation, the contribution of anti-gE antibodies toward protective immunity after Zostavax needs further evaluation.IMPORTANCE Varicella-zoster virus (VZV) is the causative agent of chickenpox and shingles. Following infection with VZV, the virus becomes latent and resides in nerve cells. Age-related declines in immunity/immunosuppression can result in reactivation of this latent virus, causing shingles. It has been shown that waning T cell immunity correlates with an increased incidence of VZV reactivation. Interestingly, serum with high levels of VZV-specific antibodies (VariZIG; IV immunoglobulin) has been administered to high-risk populations, e.g., immunocompromised children, newborns, and pregnant women, after exposure to VZV and has shown some protection against chickenpox. However, the relative contribution of antibodies against individual surface glycoproteins toward protection from shingles in elderly/immunocompromised individuals has not been established. Here, we examined the breadth and functionality of VZV-specific antibodies after vaccination with the live attenuated VZV vaccine Zostavax in humans. This study will add to our understanding of the role of antibodies in protection against shingles.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Imunidade Celular/imunologia , Vacinas Atenuadas/imunologia , Idoso , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Herpes Zoster/prevenção & controle , Herpes Zoster/virologia , Humanos , Hospedeiro Imunocomprometido , Pessoa de Meia-Idade , Vacinação
19.
J Immunol ; 198(7): 2671-2680, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250159

RESUMO

Although RBC transfusion can result in the development of anti-RBC alloantibodies that increase the probability of life-threatening hemolytic transfusion reactions, not all patients generate anti-RBC alloantibodies. However, the factors that regulate immune responsiveness to RBC transfusion remain incompletely understood. One variable that may influence alloantibody formation is RBC alloantigen density. RBC alloantigens exist at different densities on the RBC surface and likewise exhibit distinct propensities to induce RBC alloantibody formation. However, although distinct alloantigens reside on the RBC surface at different levels, most alloantigens also represent completely different structures, making it difficult to separate the potential impact of differences in Ag density from other alloantigen features that may also influence RBC alloimmunization. To address this, we generated RBCs that stably express the same Ag at different levels. Although exposure to RBCs with higher Ag levels induces a robust Ab response, RBCs bearing low Ag levels fail to induce RBC alloantibodies. However, exposure to low Ag-density RBCs is not without consequence, because recipients subsequently develop Ag-specific tolerance. Low Ag-density RBC-induced tolerance protects higher Ag-density RBCs from immune-mediated clearance, is Ag specific, and occurs through the induction of B cell unresponsiveness. These results demonstrate that Ag density can potently impact immune outcomes following RBC transfusion and suggest that RBCs with altered Ag levels may provide a unique tool to induce Ag-specific tolerance.


Assuntos
Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/imunologia , Tolerância Imunológica/imunologia , Isoantígenos/imunologia , Glicoproteínas de Membrana/imunologia , Metaloendopeptidases/imunologia , Animais , Citometria de Fluxo , Humanos , Imunofenotipagem , Isoanticorpos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Cancer Immunol Immunother ; 67(11): 1767-1776, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167863

RESUMO

PD-1-targeted therapy has dramatically changed advanced cancer treatment. However, many questions remain, including specificity of T cells activated by PD-1 therapy and how peripheral blood analysis correlates to effects at tumor sites. In this study, we utilized TCR sequencing to dissect the composition of peripheral blood CD8 T cells activated upon therapy, comparing it with tumor-infiltrating lymphocytes. We report on a nonagenarian melanoma patient who showed a prominent increase in peripheral blood Ki-67 + CD8 T cells following brain stereotactic radiation and anti-PD-1 immunotherapy. Proliferating CD8 T cells exhibited an effector-like phenotype with expression of CD38, HLA-DR and Granzyme B, as well as expression of the positive costimulatory molecules CD28 and CD27. TCR sequencing of peripheral blood CD8 T cells revealed a highly oligoclonal repertoire at baseline with one clonotype accounting for 30%. However, the majority of dominant clones-including a previously identified cytomegalovirus-reactive clone-did not expand following treatment. In contrast, expanding clones were present at low frequencies in the peripheral blood but were enriched in a previously resected liver metastasis. The patient has so far remained recurrence-free for 36 months, and several CD8 T cell clones that expanded after treatment were maintained at elevated levels for at least 8 months. Our data show that even in a nonagenarian individual with oligoclonal expansion of CD8 T cells, we can identify activation of tumor-infiltrating CD8 T cell clones in peripheral blood following anti-PD-1-based immunotherapies.


Assuntos
Neoplasias Encefálicas/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiorradioterapia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células Clonais , Humanos , Imunoterapia , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA