Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 451(7182): 1085-9, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18305540

RESUMO

The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of approximately 1 GPa, tensile ductility of approximately 2-3 per cent, and an enhanced mode I fracture toughness of K(1C) approximately 40 MPa m(1/2) were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K(1C) up to approximately 170 MPa m(1/2), and fracture energies for crack propagation as high as G(1C) approximately 340 kJ m(-2). The K(1C) and G(1C) values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.

2.
Proc Natl Acad Sci U S A ; 105(51): 20136-40, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19074287

RESUMO

The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughened BMG composites have been created in a Zr-Ti-based system with mechanical properties comparable with high-performance crystalline alloys. In this work, we present a series of low-density, Ti-based BMG composites with combinations of high strength, tensile ductility, and excellent fracture toughness.


Assuntos
Vidro/química , Titânio , Mecânica , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA