Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 162: 287-296, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407760

RESUMO

Low doses of mercury (Hg) promote deleterious effects on cardiovascular system, but the mechanisms implicated remain unclear. This study analyzed whether angiotensin II AT-1 receptors are involved in the vascular dysfunction caused by chronic exposure to low HgCl2 doses. For this, rats were divided into four groups and untreated (saline by im injections and tap water by gavage) or treated for 30 days as follows: Mercury (HgCl2im, first dose of 4.6 µg kg-1 and subsequent doses of 0.07 µg kg-1 day-1, and tap water by gavage); Losartan (saline im and losartan, 15 mg kg-1 day-1, by gavage); Losartan-Mercury (HgCl2im and Losartan by gavage). Systolic blood pressure was measured by tail plethysmography, vascular reactivity in aorta by isolated organ bath, oxidative stress by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and antioxidant capacity (FRAP) and protein expression of AT-1 receptors by Western Blot. As results, co-treatment with losartan prevented the increased aortic vasoconstrictor responses to phenylephrine (Phe), the involvement of ROS and prostanoids on the response to Phe and the reduced negative endothelial modulation by nitric oxide on these responses. Moreover, this co-treatment avoided the increase in plasmatic and vascular oxidative stress and AT-1 protein expression in aorta. In conclusion, these results suggest that AT-1 receptors upregulation might play a key role in the vascular damage induced by Hg exposure by increasing oxidative stress and probably by reducing NO bioavailability.


Assuntos
Angiotensina II , Mercúrio , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina , Receptores de Angiotensina , Angiotensina II/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular , Mercúrio/toxicidade , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/metabolismo , Regulação para Cima , Vasoconstrição
3.
Reprod Fertil Dev ; 29(9): 1803-1812, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755963

RESUMO

Mercury is a ubiquitous environmental pollutant and mercury contamination and toxicity are serious hazards to human health. Some studies have shown that mercury impairs male reproductive function, but less is known about its effects following exposure at low doses and the possible mechanisms underlying its toxicity. Herein we show that exposure of rats to mercury chloride for 30 days (first dose 4.6µgkg-1, subsequent doses 0.07µgkg-1day-1) resulted in mean (±s.e.m.) blood mercury concentrations of 6.8±0.3ngmL-1, similar to that found in human blood after occupational exposure or released from removal of amalgam fillings. Even at these low concentrations, mercury was deposited in reproductive organs (testis, epididymis and prostate), impaired sperm membrane integrity, reduced the number of mature spermatozoa and, in the testes, promoted disorganisation, empty spaces and loss of germinal epithelium. Mercury increased levels of reactive oxygen species and the expression of glutathione peroxidase (GPx) 1 and GPx4. These results suggest that the toxic effects of mercury on the male reproductive system are due to its accumulation in reproductive organs and that the glutathione system is its potential target. The data also suggest, for the first time, a possible role of the selenoproteins GPx1 and GPx4 in the reproductive toxicity of mercury chloride.


Assuntos
Glutationa Peroxidase/metabolismo , Mercúrio/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Glutationa/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
5.
J Toxicol Environ Health A ; 77(1-3): 143-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555655

RESUMO

Mercury (Hg) is a widespread environmental pollutant that adversely affects the male reproductive system. The precise mechanisms underlying mercuric chloride (HgCl2)-induced toxicity are not fully understood; however, evidence indicates that oxidative stress may be involved in this process. Although the adverse effects of high levels of inorganic Hg on the male reproductive system have been investigated, the effects of low levels of exposure are unknown. Therefore, the aim of this study was to investigate the effects of chronic exposure to low concentrations of HgCl2 on sperm parameters, lipid peroxidation, and antioxidant activity of male rats. Three-month-old male Wistar rats were treated for 30 d and divided into groups: control (saline, i.m.) and HgCl2 group (i.m., first dose 4.6 µg/kg, subsequent doses 0.07 µg/kg/d). Sperm parameters (count, motility and morphology) and biomarkers of oxidative stress in testis, epididymis, prostate, and vas deferens were analyzed. Mercury treatment produced a reduction in sperm quantity (testis and epididymis) and daily sperm production, following by decrease in sperm motility and increase on head and tail morphologic abnormalities. HgCl2 exposure was correlated with enhanced oxidative stress in reproductive organs, represented not only by augmented lipid peroxidation but also by changes in antioxidant enzymes activity superoxide dismutase (SOD) and catalase (CAT) and nonprotein thiol levels. In conclusion, chronic exposure to low doses of Hg impaired sperm quality and adversely affected male reproductive functions, which may be due, at least in part, to enhanced oxidative stress.


Assuntos
Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Espermatozoides/fisiologia , Testes de Toxicidade Crônica
6.
Toxicol Appl Pharmacol ; 268(2): 188-200, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23415682

RESUMO

Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl2 affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl2 (first dose 4.6mgkg(-1), subsequent doses 0.07mgkg(-1)day(-1), 30days) and cultured aortic VSMC stimulated with HgCl2 (0.05-5µg/ml) were used. Treatment of rats with HgCl2 decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl2: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl2. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl2-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Mercúrio/toxicidade , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Masculino , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Ratos , Ratos Wistar
7.
Curr Pharm Des ; 26(30): 3676-3683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32216734

RESUMO

The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.


Assuntos
Proteínas do Ovo , Hidrolisados de Proteína , Dieta , Humanos , Estresse Oxidativo , Peptídeos , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia
8.
Curr Hypertens Rev ; 16(3): 201-209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30648517

RESUMO

The use of heavy metals is closely linked to the history of mankind. They have been used as important materials in a wide variety of human activities such as manufacturing utensils and tools. Such extended use has significantly increased professional and environmental exposure to mercury, lead and cadmium. These metals are known to produce hypertension in humans and animals and, among other effects, they can also affect endothelial function. Results described here suggest that mercury, lead and cadmium affect vascular reactivity, even at low doses or concentrations. Several vascular actions are mediated by the endothelium via increasing the production of free radicals and angiotensin II by local ACE stimulation. These results provide further evidence that these toxic metals, even at low doses, are an environmental risk factor to the exposed population. These results also suggest that continuous exposure to these metals, followed by their absorption and progressive accumulation in the body, may be hazardous to cardiovascular function. Therefore, the current reference values, which are considered safe, need to be reduced.


Assuntos
Mercúrio , Metais Pesados , Animais , Cádmio/toxicidade , Endotélio , Exposição Ambiental , Humanos , Metais Pesados/toxicidade
9.
Neurotox Res ; 31(1): 20-30, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473855

RESUMO

Aluminum (Al) is a significant environmental contaminant. While a good deal of research has been conducted on the acute neurotoxic effects of Al, little is known about the effects of longer-term exposure at human dietary Al levels. Therefore, the purpose of this study was to investigate the effects of 60-day Al exposure at low doses for comparison with a model of exposure known to produce neurotoxicity in rats. Three-month-old male Wistar rats were divided into two major groups: (1) low aluminum levels, and (2) a high aluminum level. Group 1 rats were treated orally by drinking water for 60 days as follows: (a) control-received ultrapure drinking water; (b) aluminum at 1.5 mg/kg b.w., and (c) aluminum at 8.3 mg/kg b.w. Group 2 rats were treated through oral gavages for 42 days as follows: (a) control-received ultrapure water; (b) aluminum at 100 mg/kg b.w. We analyzed cognitive parameters, biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in hippocampus and prefrontal cortex. Al treatment even at low doses promoted recognition memory impairment seen in object recognition memory testing. Moreover, Al increased hippocampal reactive oxygen species and lipid peroxidation, reduced antioxidant capacity, and decreased AChE activity. Our data demonstrate that 60-day subchronic exposure to low doses of Al from feed and added to the water, which reflect human dietary Al intake, reaches a threshold sufficient to promote memory impairment and neurotoxicity. The elevation of oxidative stress and cholinergic dysfunction highlight pathways of toxic actions for this metal.


Assuntos
Alumínio/toxicidade , Transtornos da Memória/induzido quimicamente , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Antioxidantes/metabolismo , Dieta , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Água Potável , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Poluentes da Água/toxicidade , Poluição Química da Água
10.
PLoS One ; 9(11): e111202, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368988

RESUMO

Mercury is a toxic and bio-accumulative heavy metal of global concern. While good deals of research have been conducted on the toxic effects of mercury, little is known about the mechanisms involved in the pathogenesis of male reproductive dysfunction induced by mercury. Therefore, the purpose of this study was to assess the effects and underlying mechanisms of chronic mercury exposure at low levels on male reproductive system of rats. Three-month-old male Wistar rats were divided into two groups and treated for 60 days with saline (i.m., Control) and HgCl2 (i.m. 1st dose: 4.6 µg/kg, subsequent doses 0.07 µg/kg/day). We analyzed sperm parameters, hormonal levels and biomarkers of oxidative stress in testis, epididymis, prostate and vas deferens. Mercury treatment decreased daily sperm production, count and motility and increased head and tail morphologic abnormalities. Moreover, mercury treatment decreased luteinizing hormone levels, increased lipid peroxidation on testis and decreased antioxidant enzymes activities (superoxide dismutase and catalase) on reproductive organs. Our data demonstrate that 60-day chronic exposure to low concentrations of HgCl2 impairs sperm quality and promotes hormonal imbalance. The raised oxidative stress seems to be a potential mechanism involved on male reproductive toxicity by mercury.


Assuntos
Cloreto de Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Imunoensaio , Peroxidação de Lipídeos/efeitos dos fármacos , Hormônio Luteinizante/análise , Masculino , Ratos , Ratos Wistar , Contagem de Espermatozoides , Superóxido Dismutase/metabolismo , Testosterona/análise , Fatores de Tempo
11.
Int J Dev Neurosci ; 31(7): 468-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23770019

RESUMO

This work examines the effects of chronic exposure to low inorganic mercury (mercury chloride, HgCl(2)) concentration on the recognition and aversive memories. Forty male Wistar rats were divided into 4 groups treated during 30 or 60 days with saline (control) or HgCl(2) doses. After treated the animals were tested considering object recognition and inhibitory avoidance behavioral memory paradigms. Elevated plus maze, open field and tail flick tests were used to assess anxiety, locomotor and exploratory activity and pain thresholds. Only exposure for 60 days to HgCl(2) induced in memory deficits quantified in the object recognition task. In the inhibitory avoidance all the animals exposed to mercury (for 30 or 60 days) presented worst performance than control animals. Our results suggest that chronic exposure to low mercury chloride concentrations impairs memory formation.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Cloreto de Mercúrio/toxicidade , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
12.
PLoS One ; 8(2): e55806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390552

RESUMO

UNLABELLED: Mercury increases the risk of cardiovascular disease and oxidative stress and alters vascular reactivity. This metal elicits endothelial dysfunction causing decreased NO bioavailability via increased oxidative stress and contractile prostanoid production. NADPH oxidase is the major source of reactive oxygen species (ROS) in the vasculature. Our aim was to investigate whether treatment with apocynin, an NADPH oxidase inhibitor, prevents the vascular effects caused by chronic intoxication with low concentrations of mercury. Three-month-old male Wistar rats were treated for 30 days with a) intramuscular injections (i.m.) of saline; b) HgCl(2) (i.m. 1(st) dose: 4.6 µg/kg, subsequent doses: 0.07 µg/kg/day); c) Apocynin (1.5 mM in drinking water plus saline i.m.); and d) Apocynin plus HgCl(2). The mercury treatment resulted in 1) an increased aortic vasoconstrictor response to phenylephrine and reduced endothelium-dependent responses to acetylcholine; 2) the increased involvement of ROS and vasoconstrictor prostanoids in response to phenylephrine, whereas the endothelial NO modulation of such responses was reduced; and 3) the reduced activity of aortic superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased plasma malondialdehyde (MDA) levels. Treatment with apocynin partially prevented the increased phenylephrine responses and reduced the endothelial dysfunction elicited by mercury treatment. In addition, apocynin treatment increased the NO modulation of vasoconstrictor responses and aortic SOD activity and reduced plasma MDA levels without affecting the increased participation of vasoconstrictor prostanoids observed in aortic segments from mercury-treated rats. CONCLUSIONS: Mercury increases the vasoconstrictor response to phenylephrine by reducing NO bioavailability and increasing the involvement of ROS and constrictor prostanoids. Apocynin protects the vessel from the deleterious effects caused by NADPH oxidase, but not from those caused by prostanoids, thus demonstrating a two-way action.


Assuntos
Acetofenonas/farmacologia , Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cloreto de Mercúrio/toxicidade , Acetilcolina/farmacologia , Administração Oral , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Injeções Intramusculares , Masculino , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/farmacologia , Prostaglandinas/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA