Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338687

RESUMO

Gastrointestinal parasitic nematode (GIN) infections are the cause of severe losses to farmers in countries where small ruminants such as sheep and goat are the mainstay of livestock holdings. There is a need to develop effective and easy-to-administer anti-parasite vaccines in areas where anthelmintic resistance is rapidly rising due to the inefficient use of drugs currently available. In this review, we describe the most prevalent and economically significant group of GIN infections that infect small ruminants and the immune responses that occur in the host during infection with an emphasis on mucosal immunity. Furthermore, we outline the different prevention strategies that exist with a focus on whole and purified native parasite antigens as vaccine candidates and their possible oral-nasal administration as a part of an integrated parasite control toolbox in areas where drug resistance is on the rise.


Assuntos
Anti-Helmínticos , Doenças Transmissíveis , Gastroenteropatias , Nematoides , Infecções por Nematoides , Doenças dos Ovinos , Animais , Ovinos , Imunidade nas Mucosas , Ruminantes , Infecções por Nematoides/prevenção & controle , Infecções por Nematoides/veterinária , Gastroenteropatias/tratamento farmacológico , Cabras , Doenças Transmissíveis/tratamento farmacológico , Anti-Helmínticos/farmacologia , Doenças dos Ovinos/prevenção & controle
2.
PLoS Pathog ; 16(3): e1008333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32119719

RESUMO

Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.


Assuntos
Mucosa Intestinal/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Translocação Bacteriana , Chlorocebus aethiops , Progressão da Doença , Microbioma Gastrointestinal , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Mucosa Intestinal/microbiologia , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia
3.
Cancer Sci ; 109(5): 1319-1329, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575556

RESUMO

For a successful tumor vaccine, it is necessary to develop effective immuno-adjuvants and identify specific tumor antigens. Tumor cells obtained from surgical or biopsy tissues are a good source of tumor antigens but, unlike bacteria, they do not induce strong immune responses. Here, we designed 2 novel lipopeptides that coat tumor cell surfaces and mimic bacterial components. Tumor cells coated with these lipopeptides (called bacteria-mimicking tumor cells [BMTC]) were prepared and their efficacy as a tumor vaccine examined. Natural bacterial lipopeptides act as ligands for toll-like receptor 2 (TLR2) and activate dendritic cells (DC). To increase the affinity of the developed lipopeptides for the negatively charged plasma membrane, a cationic polypeptide was connected to Pam2Cys (P2C), which is the basic structure of the TLR2 ligand. This increased the non-specific binding affinity of the peptides for the cell surface. Two such lipopeptides, P2CSK11 (containing 1 serine and 11 lysine residues) and P2CSR11 (containing 1 serine and 11 arginine residues) bound to irradiated tumor cells via the long cationic polypeptides more efficiently than the natural lipopeptide MALP2 (P2C-GNNDESNISFKEK) or a synthetic lipopeptide P2CSK4 (a short cationic polypeptide containing 1 serine and 4 lysines). BMTC coated with P2CSR11 or P2CSK11 were efficiently phagocytosed by DC and induced antigen cross-presentation in vitro. They also induced effective tumor-specific cytotoxic T cell responses and inhibited tumor growth in in vivo mouse models. P2CSR11 activated DC but induced less inflammation-inducing cytokines/interferons than other lipopeptides. Thus, P2CSR11 is a strong candidate antigen-specific immuno-adjuvant, with few adverse effects.


Assuntos
Vacinas Anticâncer/administração & dosagem , Lipopeptídeos/administração & dosagem , Neoplasias/tratamento farmacológico , Receptor 2 Toll-Like/imunologia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/fisiologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Lipopeptídeos/imunologia , Lipopeptídeos/farmacologia , Camundongos , Neoplasias/imunologia , Fagocitose , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Virol ; 88(10): 5687-705, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623416

RESUMO

UNLABELLED: African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE: We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


Assuntos
Infecções por Lentivirus/veterinária , Doenças dos Macacos/transmissão , Doenças dos Macacos/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Chlorocebus aethiops , Análise por Conglomerados , Feminino , Citometria de Fluxo , Gâmbia , Genótipo , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/transmissão , Infecções por Lentivirus/virologia , Subpopulações de Linfócitos/imunologia , Masculino , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/genética
5.
PLoS Pathog ; 9(1): e1003011, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23349627

RESUMO

Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 10(4)-10(6) RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (10(7)-10(8) RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.


Assuntos
Chlorocebus aethiops , Evolução Molecular , Variação Genética , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Sequência de Bases , Feminino , Interações Hospedeiro-Patógeno , Masculino , Dados de Sequência Molecular , Taxa de Mutação , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , África do Sul/epidemiologia
6.
PLoS Pathog ; 9(10): e1003600, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098110

RESUMO

We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Mieloides/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Apoptose/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Efeito Espectador/imunologia , Chlorocebus aethiops , Células Dendríticas/patologia , Células Mieloides/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia
7.
J Immunol ; 190(5): 2188-98, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23338235

RESUMO

The role of mononuclear phagocytes in the pathogenesis or control of HIV infection is unclear. In this study, we monitored the dynamics and function of dendritic cells (DC) and monocytes/macrophages in rhesus macaques acutely infected with pathogenic SIVmac251 with and without antiretroviral therapy (ART). SIV infection was associated with monocyte mobilization and recruitment of plasmacytoid DC (pDC) and macrophages to lymph nodes, which did not occur with ART treatment. SIVmac251 single-stranded RNA encoded several uridine-rich sequences that were potent TLR7/8 ligands in mononuclear phagocytes of naive animals, stimulating myeloid DC (mDC) and monocytes to produce TNF-α and pDC and macrophages to produce both TNF-α and IFN-α. Following SIV infection, pDC and monocytes/macrophages rapidly became hyporesponsive to stimulation with SIV-encoded TLR ligands and influenza virus, a condition that was reversed by ART. The loss of pDC and macrophage function was associated with a profound but transient block in the capacity of lymph node cells to secrete IFN-α upon stimulation. In contrast to pDC and monocytes/macrophages, mDC increased TNF-α production in response to stimulation following acute infection. Moreover, SIV-infected rhesus macaques with stable infection had increased mDC responsiveness to SIV-encoded TLR ligands and influenza virus at set point, whereas animals that progressed rapidly to AIDS had reduced mDC responsiveness. These findings indicate that SIV encodes immunostimulatory TLR ligands and that pDC, mDC, and monocytes/macrophages respond to these ligands differently as a function of SIV infection. The data also suggest that increased responsiveness of mDC to stimulation following SIV infection may be beneficial to the host.


Assuntos
Células Dendríticas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/patogenicidade , Receptores Toll-Like/imunologia , Animais , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Células Dendríticas/virologia , Vírus da Influenza A Subtipo H7N3/imunologia , Interferon-alfa/genética , Interferon-alfa/imunologia , Ligantes , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta , Macrófagos/virologia , Monócitos/virologia , Células Mieloides/imunologia , Células Mieloides/virologia , Especificidade de Órgãos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Índice de Gravidade de Doença , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Receptores Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
Immunology ; 143(2): 146-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24684292

RESUMO

Myeloid dendritic cells (mDC) are key mediators of innate and adaptive immunity to virus infection, but the impact of HIV infection on the mDC response, particularly early in acute infection, is ill-defined. We studied acute pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques to address this question. The mDC in blood and bone marrow were depleted within 12 days of intravenous infection with SIVmac251, associated with a marked proliferative response. In lymph nodes, mDC were apoptotic, activated and proliferating, despite normal mDC numbers, reflecting a regenerative response that compensated for mDC loss. Blood mDC had increased expression of MHC class II, CCR7 and CD40, whereas in lymph nodes these markers were significantly decreased, indicating that acute infection induced maturation of mDC in blood but resulted in accumulation of immature mDC in lymph nodes. Following SIV infection, lymph node mDC had an increased capacity to secrete tumour necrosis factor-α upon engagement with a Toll-like receptor 7/8 ligand that mimics exposure to viral RNA, and this was inversely correlated with MHC class II and CCR7 expression. Lymph node mDC had an increased ability to capture and cleave soluble antigen, confirming their functionally immature state. These data indicate that acute SIV infection results in increased mDC turnover, leading to accumulation in lymph nodes of immature mDC with an increased responsiveness to virus stimulation.


Assuntos
Células Dendríticas/imunologia , Linfonodos/imunologia , Macaca mulatta/imunologia , Células Mieloides/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Apoptose , Antígenos CD40/sangue , Proliferação de Células , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células Dendríticas/virologia , Feminino , Antígenos de Histocompatibilidade Classe II/sangue , Interações Hospedeiro-Patógeno , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/virologia , Macaca mulatta/sangue , Masculino , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Mieloides/virologia , Receptores CCR7/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
9.
Vet Res Commun ; 48(1): 245-257, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642819

RESUMO

Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.


Assuntos
Mannheimia haemolytica , Doenças dos Ovinos , Animais , Ovinos , Raios gama , Vacinas Bacterianas , Vacinação/veterinária , Imunoglobulina G , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/microbiologia
10.
Vet Res Commun ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709372

RESUMO

Pasteurella multocida is affecting a multitude of animals and severely affects livestock production. Existing vaccines are mostly chemically inactivated and do not lead to wide protection. Irradiated vaccines are enjoying a renaissance and the concept of "replication defficient but metabolically active" vaccines was recently evaluated in several vaccine trials. P. multocida was isolated from the nasal swab, blood, and lung swab samples from infected rabbits. Gamma irradiation of P. multocida for inhibition of replication was evaluated at an optimized irradiation dose of 10 Kgy established. Four groups of rabbits were (mock) vaccinated with a commercial P. multocida vaccine and three irradiated formulations as liquid, lyophilized formulations with added Trehalose and lyophilized-Trehalose with an "activation" culturing the irradiated bacteria for 24 in broth. Evaluation of humoral immune response by ELISA showed that all three irradiated vaccines produced an effective, protective, and continued IgG serum level after vaccination and bacterial challenge. The IFN-γ expression is maintained at a normal level, within each individual group however, the lyophilized trehalose irradiated vaccine showed peak mean of IFN-γ titer at one week after booster dose (day 21) which was statistically significant. Cumulatively, the results of this study show that gamma-irradiated P. multocida vaccines are safe and protect rabbits against disease. Moreover, Rabbits' immunization with the three irradiated formulations avoided adverse side effects as compared to commercial polyvalent vaccine, the body weight gain for the irradiated vaccine groups indicates less stress compared to the commercial polyvalent vaccine.

11.
Vaccine ; 41(7): 1342-1353, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36642629

RESUMO

Escherichia coli causes colibacillosis in chickens, which has severe economic and public health consequences. For the first time, we investigated the efficacy of gamma-irradiated E. coli to prevent colibacillosis in chickens considering different strains and application routes. Electron microscopy, alamarBlue assay and matrix assisted laser desorption/ionization time-of- flight mass spectrometry showed that the cellular structure, metabolic activity and protein profiles of irradiated and non-treated E. coli PA14/17480/5-ovary (serotype O1:K1) were similar. Subsequently, three animal trials were performed using the irradiated E. coli and clinical signs, pathological lesions and bacterial colonization in systemic organs were assessed. In the first animal trial, the irradiated E. coli PA14/17480/5-ovary administered at 7 and 21 days of age via aerosol and oculonasal routes, respectively, prevented the occurrence of lesions and systemic bacterial spread after homologous challenge, as efficient as live infection or formalin-killed cells. In the second trial, a single aerosol application of the same irradiated strain in one-day old chickens was efficacious against challenges with a homologous or a heterologous strain (undefined serotype). The aerosol application elicited better protection as compared to oculonasal route. Finally, in the third trial, efficacy against E. coli PA15/19103-3 (serotype O78:K80) was shown. Additionally, previous results of homologous protection were reconfirmed. The irradiated PA15/19103-3 strain, which also showed lower metabolic activity, was less preferred even for the homologous protection, underlining the importance of the vaccine strain. In all the trials, the irradiated E. coli did not provoke antibody response indicating the importance of innate or cell mediated immunity for protection. In conclusion, this proof-of-concept study showed that the non-adjuvanted single aerosol application of irradiated "killed but metabolically active" E. coli provided promising results to prevent colibacillosis in chickens at an early stage of life. The findings open new avenues for vaccine production with E. coli in chickens using irradiation technology.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli , Galinhas , Sorogrupo , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária
12.
J Vis Exp ; (195)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37318241

RESUMO

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) within the immune system. They patrol the organism looking for pathogens and play a unique role within the immune system by linking the innate and adaptive immune responses. These cells can phagocytize and then present captured antigens to effector immune cells, triggering a diverse range of immune responses. This paper demonstrates a standardized method for the in vitro generation of bovine monocyte-derived dendritic cells (MoDCs) isolated from cattle peripheral blood mononuclear cells (PBMCs) and their application in evaluating vaccine immunogenicity. Magnetic-based cell sorting was used to isolate CD14+ monocytes from PBMCs, and the supplementation of complete culture medium with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) was used to induce the differentiation of CD14+ monocytes into naive MoDCs. The generation of immature MoDCs was confirmed by detecting the expression of major histocompatibility complex II (MHC II), CD86, and CD40 cell surface markers. A commercially available rabies vaccine was used to pulse the immature MoDCs, which were subsequently co-cultured with naive lymphocytes. The flow cytometry analysis of the antigen-pulsed MoDCs and lymphocyte co-culture revealed the stimulation of T lymphocyte proliferation through the expression of Ki-67, CD25, CD4, and CD8 markers. The analysis of the mRNA expression of IFN-γ and Ki-67, using quantitative PCR, showed that the MoDCs could induce the antigen-specific priming of lymphocytes in this in vitro co-culture system. Furthermore, IFN-γ secretion assessed using ELISA showed a significantly higher titer (**p < 0.01) in the rabies vaccine-pulsed MoDC-lymphocyte co-culture than in the non-antigen-pulsed MoDC-lymphocyte co-culture. These results show the validity of this in vitro MoDC assay to measure vaccine immunogenicity, meaning this assay can be used to identify potential vaccine candidates for cattle before proceeding with in vivo trials, as well as in vaccine immunogenicity assessments of commercial vaccines.


Assuntos
Monócitos , Vacina Antirrábica , Bovinos , Animais , Leucócitos Mononucleares , Células Dendríticas , Antígeno Ki-67/metabolismo , Imunogenicidade da Vacina , Antígenos/metabolismo , Diferenciação Celular , Células Cultivadas
13.
Front Immunol ; 14: 1185232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261344

RESUMO

The present study investigated the expression of cytokines and cellular changes in chickens following vaccination with irradiated avian pathogenic Escherichia coli (APEC) and/or challenge. Four groups of 11-week-old pullets, each consisting of 16 birds were kept separately in isolators before they were sham inoculated (N), challenged only (C), vaccinated (V) or vaccinated and challenged (V+C). Vaccination was performed using irradiated APEC applied via aerosol. For challenge, the homologous strain was administered intratracheally. Birds were sacrificed on 3, 7, 14 and 21 days post challenge (dpc) to examine lesions, organ to body weight ratios and bacterial colonization. Lung and spleen were sampled for investigating gene expression of cytokines mediating inflammation by RT-qPCR and changes in the phenotype of subsets of mononuclear cells by flow cytometry. After re-stimulation of immune cells by co-cultivation with the pathogen, APEC-specific IFN-γ producing cells were determined. Challenged only birds showed more severe pathological and histopathological lesions, a higher probability of bacterial re-isolation and higher organ to body weight ratios compared to vaccinated and challenged birds. In the lung, an upregulation of IL-1ß and IL-6 following vaccination and/or challenge at 3 dpc was observed, whereas in the spleen IL-1ß was elevated. Changes were observed in macrophages and TCR-γδ+ cells within 7 dpc in spleen and lung of challenged birds. Furthermore, an increase of CD4+ cells in spleen and a rise of Bu-1+ cells in lung were present in vaccinated and challenged birds at 3 dpc. APEC re-stimulated lung and spleen mononuclear cells from only challenged pullets showed a significant increase of IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. Vaccinated and challenged chickens responded with a significant increase of IFN-γ+CD8α+ T cells in the lung and IFN-γ+TCR-γδ+ cells in the spleen. Re-stimulation of lung mononuclear cells from vaccinated birds resulted in a significant increase of both IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. In conclusion, vaccination with irradiated APEC caused enhanced pro-inflammatory response as well as the production of APEC-specific IFN-γ-producing γδ and CD8α T cells, which underlines the immunostimulatory effect of the vaccine in the lung. Hence, our study provides insights into the underlying immune mechanisms that account for the defense against APEC.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Animais , Galinhas , Feminino , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Aerossóis
14.
PLoS Pathog ; 6(12): e1001235, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203477

RESUMO

Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis.


Assuntos
Síndrome da Imunodeficiência Adquirida/patologia , Células Dendríticas/patologia , Valor Preditivo dos Testes , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome da Imunodeficiência Adquirida/etiologia , Animais , Movimento Celular , Progressão da Doença , Haplorrinos , Humanos , Linfonodos/patologia , Fatores de Tempo
15.
Front Vet Sci ; 9: 859124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664846

RESUMO

In the recent years, safety concerns regarding the administration of probiotics led to an increased interest in developing inactivated probiotics, also called "paraprobiotics". Gamma irradiation represents a promising tool that can be used to produce safe paraprobiotics by inhibiting replication while preserving the structure, the metabolic activity, and the immunogenicity of bacteria. In this study, we evaluated the ability of four strains of lactic acid bacteria (LAB: Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, and Lacticaseibacillus paracasei) in preserving the metabolic activity and the immune modulation of swine porcine peripheral blood mononuclear cells, after gamma irradiation or heat inactivation. Our results show that all four strains retained the metabolic activity following gamma irradiation but not after heat inactivation. In terms of immune-modulatory capacity, irradiated L. acidophilus and Lc. paracasei were able to maintain an overall gene expression pattern similar to their live state, as heat inactivation did with Lc. casei. Moreover, we show that the two inactivation methods applied to the same strain can induce an opposed expression of key genes involved in pro-inflammatory response (e.g., IFNα and interleukin-6 for Lc. casei), whereas gamma irradiation of L. acidophilus and Lc. paracasei was able to induce a downregulation of the anti-inflammatory TGFß. Taken together, our data show that immune modulation can be impacted not only by different inactivation methods but also by the strain of LAB selected. This study highlights that gamma irradiation harbors the potential to produce safe non-replicative metabolically active LAB and identifies immunomodulatory capacities that may be applied as vaccine adjuvants.

16.
Vet Med Sci ; 8(2): 626-634, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878724

RESUMO

BACKGROUND: Avian influenza virus (AIV) subtype H9N2 is a low pathogenic avian influenza virus (LPAIV). OBJECTIVE: This study aims to evaluate the humoral and cellular immunity in vaccinated mice and broiler chicken by irradiated AIV antigen plus carboxymethyl chitosan bounded iron oxide nanoparticles (CMC-IO NPs) as an adjuvant. METHODS: AIV subtype H9N2 with 108.5 EID50 /ml and haemagglutinin antigen assay about 10 log2 was irradiated by 30 kGy gamma radiation dose. Then, the gamma-irradiated AIV was used as an inactivated vaccine and conjugated with CMC-IO NPs to improve immune responses on mice. IO NPs must be applied in all activated tests using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), and then functionalized by CMC as IO-CMC. Fourier transform infrared (FTIR) spectra on functionalized IO-CMC showed a peak of 638 cm-1 which is a band between metal and O (Fe-O). RESULTS: Based on the comparison between the two X-ray diffraction (XRD) patterns on Fe2 O3 -NPs and IO-CMC, the characteristics of IO-NPs did not change after carboxymethylation. A CHN Analyzer was applied to measure the molecular weight of IO-CMC that was calculated as 1045 g. IO-CMC, irradiated AIV-IO-CMC and formalin AIV-IO-CMC were injected into 42 BALB/c mice in six groups. The fourth group was the negative control, and the fifth and sixth groups were inoculated by irradiated AIV-ISA70 and formalin AIV-ISA70 vaccines. An increase in haemagglutination inhibition (HI) antibody titration was observed in the irradiated AIV-IO-CMC and formalin AIV-IO-CMC groups (p < 0.05). In addition, increases in the lymphoproliferative activity of re-stimulated splenic lymphocytes, interfron-γ (IFN-γ) and interleukin-2 (IL-2) concentration in the irradiated AIV-IO-CMC group demonstrated the activation of Type 1 helper cells. The concentration of IL-4 was without any significant increases in non-group. CONCLUSIONS: Accordingly, Th2 activation represented no increase. Finally, the finding showed that AIV-IO-CMC was effective on enhancing immunogenicity as irradiated AIV antigen administered with a clinically acceptable adjuvant (i.e. IO-CMC).


Assuntos
Quitosana , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Doenças dos Roedores , Animais , Antígenos Virais , Galinhas , Formaldeído , Raios gama , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos
17.
Dev Comp Immunol ; 133: 104408, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35390358

RESUMO

Avian pathogenic Escherichia coli (APEC) causes colibacillosis with different clinical manifestations. The disease is associated with compromised animal welfare and results in substantial economic losses in poultry production worldwide. So far, immunological mechanisms of protection against colibacillosis are not comprehensively resolved. Therefore, the present study aimed to use an ex vivo model applying chicken mononuclear cells stimulated by live and inactivated APEC. For this purpose, an 8-color flow cytometry panel was set up to target viable chicken immune cells including CD45+, CD8α+, CD4+, TCR-γδ+, Bu-1+ cells and monocytes/macrophages along with the cytokines interferon gamma (IFN-γ) or interleukin 17A (IL-17A). The 8-color flow cytometry panel was applied to investigate the effect of live and two different types of inactivated APEC (formalin-killed APEC and irradiated APEC) on the cellular immune response. For that, mononuclear cells from spleen, lung and blood of 10-week-old specific pathogen-free layer birds were isolated and stimulated with live, irradiated or killed APEC. Intracellular cytokine staining and RT-qPCR assays were applied for the detection of IFN-γ and IL-17A protein level, as well as at mRNA level for spleenocytes. Ex vivo stimulation of isolated splenocytes, lung and peripheral blood mononuclear cells (PBMCs) from chickens with live, irradiated or killed APEC showed an increasing number of IFN-γ and IL-17A producing cells at protein and mRNA level. Phenotyping of the cells from blood and organs revealed that IFN-γ and IL-17A were mainly produced by CD8α+, TCR-γδ+ T cells as well as CD4+ T cells following stimulation with APEC. Expression level of cytokines were very similar following stimulation with live and irradiated APEC but lower when killed APEC were applied. Consequently, in the present study, an ex vivo model using mononuclear cells of chickens was applied to investigate the cellular immune response against APEC. The results suggest the relevance of IFN-γ and IL-17A production in different immune cells following APEC infection in chickens which needs to be further investigated in APEC primed birds.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas , Citocinas/metabolismo , Escherichia coli , Interferon gama/metabolismo , Interleucina-17/metabolismo , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
18.
Front Vet Sci ; 9: 907369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903140

RESUMO

Gamma (γ)-radiation can target viral genome replication and preserve viral structural proteins compared to formalin inactivation. Thus, a stronger immunity could be induced after the inoculation of the irradiated virus. In this study, γ-irradiated low-pathogenic avian influenza virus-H9N2 (LPAIV-H9N2) was used to immunize the broiler chicken in two formulations, including γ-irradiated LPAIV-H9N2 with 20% Trehalose intranasally (IVT.IN) or γ-irradiated LPAIV-H9N2 plus Montanide oil adjuvant ISA70 subcutaneously (IV+ISA.SC) in comparison with formalin-inactivated LPAIV-H9N2 vaccine intranasally (FV.IN) or formalin-inactivated LPAIV-H9N2 plus ISA70 subcutaneously (FV+ISA.SC). Two vaccination regimes were employed; the first one was primed on day 1 and boosted on day 15 (early regime), and the second one was primed on day 11 and boosted on day 25 (late regime). A challenge test was performed with a live homologous subtype virus. Virus shedding was monitored by quantifying the viral load via RT-qPCR on tracheal and cloacal swabs. Hemagglutination inhibition (HI) antibody titration and stimulation index (SI) of the splenic lymphocyte proliferation were measured, respectively, by HI test and Cell Proliferation assay. Cytokine assay was conducted by the RT-qPCR on antigen-stimulated spleen cells. The results of the HI test showed significant increases in antibody titer in all vaccinated groups, but it was more evident in the IVT late vaccination regime, reaching 5.33 log2. The proliferation of stimulated spleen lymphocytes was upregulated more in the IVT.IN vaccine compared to other vaccines. The mRNA transcription levels of T-helper type 1 cytokines such as interferon-gamma (IFN-γ) and interleukin 2 (IL-2) were upregulated in all vaccinated groups at the late regime. Moreover, IL-6, a pro-inflammatory cytokine was upregulated as well. However, upregulation was more noticeable in the early vaccination than the late vaccination (p< 0.05). After the challenge, the monitoring of virus shedding for the H9 gene represented an extremely low viral load. The body weight loss was not significant (p > 0.05) among the vaccinated groups. In addition, the viral load of <100.5 TCID50/ml in the vaccinated chicken indicated the protective response for all the vaccines. Accordingly, the IVT vaccine is a good candidate for the immunization of broiler chicken via the intranasal route at late regime.

19.
Front Immunol ; 13: 852091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634275

RESUMO

The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.


Assuntos
Parasitos , Trypanosoma , Animais , Raios gama/efeitos adversos , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma/genética
20.
Front Immunol ; 13: 832264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558083

RESUMO

African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.


Assuntos
Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana , Animais , Raios gama , Imunogenicidade da Vacina , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA