Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biochem Mol Toxicol ; 33(3): e22259, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30431701

RESUMO

To assess the developmental toxicity of trichloroacetate (TCA), zebrafish embryos were exposed to 8 to 48 mM of TCA and evaluated for developmental milestones from 8- to 144-hour postfertilization (hpf). All developmental toxicities are reported in this paper. Embryos were found to have developed edema in response to 16 to 48 mM of TCA exposure at 32- to 80-hpf, experienced delay in hatching success in response to 24 to 48 mM at 80-hpf. Lordosis was observed in developing embryos exposed to 40 to 48 mM at 55- to 144-hpf. The observed toxic effects of TCA exposure were found to be concentration and exposure period independent. Effects were found to be associated with increases in superoxide anion production, but these increases were also found to be concentration and time independent. TCA resulted in concentration-dependent increases in embryonic lethality at 144-hpf, with an LC50 determined to be 29.7 mM.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário , Superóxidos/metabolismo , Ácido Tricloroacético/toxicidade , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiopatologia , Lordose/etiologia , Ácido Tricloroacético/farmacologia , Peixe-Zebra/metabolismo
2.
J Appl Toxicol ; 36(9): 1090-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26663444

RESUMO

The aim of the present study was to identify human cytosolic sulfotransferases (SULTs) that are capable of sulfating benzyl alcohol and to examine whether benzyl alcohol sulfation may occur in cultured human cells as well as in human organ homogenates. A systematic analysis revealed that of the 13 known human SULTs, SULT1A1 SULT1A2, SULTA3, and SULT1B1 are capable of mediating the sulfation of benzyl alcohol. The kinetic parameters of SULT1A1 that showed the strongest benzyl alcohol-sulfating activity were determined. HepG2 human hepatoma cells were used to demonstrate the generation and release of sulfated benzyl alcohol under the metabolic settings. Moreover, the cytosol or S9 fractions of human liver, lung, kidney and small intestine were examined to verify the presence of benzyl alcohol sulfating activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Arilsulfotransferase/metabolismo , Álcool Benzílico/toxicidade , Citosol/efeitos dos fármacos , Células CACO-2 , Citosol/metabolismo , Células Hep G2 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Sulfatos/metabolismo
3.
J Cell Physiol ; 229(12): 1926-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24700505

RESUMO

Primary cilia are sensory organelles that provide a feedback mechanism to restrict Wnt signaling in the absence of endogenous Wnt activators. Abnormal Wnt signaling has been shown to result in polycystic kidney disease (PKD) although the exact mechanism has been debated. Previously, we reported that the calcium channel CaV1.2 functions in primary cilia. In this study, we show that CaV1.2 expression level is regulated by Wnt signaling. This occurs through modulation of mitochondrial mass and activity resulting in increased reactive oxygen species which generate oxidative DNA lesions. We found that the subsequent cellular DNA damage response triggers increased CaV1.2 expression. In the absence of primary cilia where Wnt signaling is upregulated, we found that CaV1.2 is overexpressed as a compensatory mechanism. We show for the first time that CaV1.2 knockdown in zebrafish results in classic primary cilia defects including renal cyst formation, hydrocephalus, and left-right asymmetry defects. Our study shows that suppressed Wnt signaling prevents CaV1.2 expression ultimately resulting in PKD phenotypes. Thus, CaV1.2 expression is tightly regulated through Wnt signaling and plays an essential sensory role in primary cilia necessary for cellular homeostasis.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Cílios/metabolismo , Doenças Renais Policísticas/metabolismo , Via de Sinalização Wnt/genética , Animais , Canais de Cálcio Tipo L/genética , Cílios/genética , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Doenças Renais Policísticas/etiologia , Doenças Renais Policísticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
4.
Res Sq ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410427

RESUMO

Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs selectively enhance G-protein coupling efficacy (e.g., amiodarone). The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated hybrid ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable hybrid ligands include 8a and 8b which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a and 8c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.

5.
Sci Rep ; 14(1): 14901, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942828

RESUMO

Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs (e.g., amiodarone) selectively enhance G protein coupling efficacy. The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable ligands include 8a, c which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a, c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.


Assuntos
Acetilcolina , Cricetulus , Locomoção , Receptor Muscarínico M1 , Peixe-Zebra , Animais , Receptor Muscarínico M1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Células CHO , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Locomoção/efeitos dos fármacos , Ligantes , Agonistas Muscarínicos/farmacologia
6.
Pharm Res ; 30(10): 2625-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23722411

RESUMO

PURPOSE: To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs. METHOD: A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue. RESULTS: NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 µm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes. CONCLUSION: The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.


Assuntos
Materiais Biocompatíveis/química , Carbamazepina/administração & dosagem , Portadores de Fármacos/química , Pulmão/metabolismo , Nanoestruturas/química , Água/química , Animais , Carbamazepina/química , Composição de Medicamentos , Emulsões , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Permeabilidade , Solubilidade , Propriedades de Superfície , Suínos , Peixe-Zebra
7.
Drug Dev Ind Pharm ; 39(2): 240-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22480266

RESUMO

CONTEXT: Water-in-oil microemulsions (w/o ME) are ideal for parenteral drug delivery. However, no such formulations have been tested for biocompatibility in in vitro cell cultures. Furthermore, sterilization of w/o MEs is a challenging process that has not been previously developed and validated. PURPOSE: To formulate pharmaceutically relevant water-in-oil (w/o) microemulsion's systems suitable for use as a parenteral formulation. METHODS: w/o MEs were prepared using dioctyl sodium sulfosuccinate (DOSS), ethyl oleate (EO), and water. Formulations were characterized using polarized light microscopy, electrical conductivity, rheology, and dynamic light scattering. An aseptic filtration method for sterilization was developed using membrane filtration. The biocompatibility of selected MEs were evaluated in NIH3T3 cell cultures. Dissolution studies were performed on microemulsions containing methylene blue to evaluate the drug release profile. RESULTS: The maximum amount of water incorporated in the formulations was 14% w/w. DOSS/EO/water microemulsions exhibited Newtonian flow. Particle sizes for these MEs were less than 30 nm in size. Formulations filtered aseptically were free of bacteria when gram-stained and visualized under a microscope. All MEs showed no toxicity to NIH 3T3 cells. DISCUSSION: The absence of birefringence and low conductivity values indicated that the formulations were w/o microemulsions. The filtration method of sterilization was validated by the absence of microbial growth on blood agar plates over a 14-day period. In vitro dye release studies demonstrate sustained release of the model drug over a 72-h time period. CONCLUSION: Characteristics delineated in this study demonstrate the potential for these formulations to be used as parenteral preparations.


Assuntos
Emulsões/química , Soluções de Nutrição Parenteral/química , Tensoativos/química , Materiais Biocompatíveis/química , Ácido Dioctil Sulfossuccínico/química , Ácidos Oleicos/química , Tamanho da Partícula , Água/química
8.
Zebrafish ; 20(6): 236-242, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38117220

RESUMO

Synthetic cathinones are drugs of abuse substituted for amphetamine-like stimulant drugs such as methamphetamine. In this study, methamphetamine was studied as a prototypical amphetamine-like drug as a first step toward establishing methods to study this entire drug class. The internal concentration of methamphetamine in zebrafish larvae was determined using matrix-matched calibration along with extraction and purification of samples using the quick, easy, cheap, effective, rugged, and safe technique in liquid chromatography-tandem mass spectrometry. Whole-body and head/trunk uptake and elimination in 5-day postfertilization zebrafish larvae were determined. A gradient method was developed using 5 mM ammonium formate with 0.1% formic acid and methanol with 0.1% formic acid as mobile phases, 10 min of total run time, and a 0.3 mL/min flow rate. The limit of quantification was 60 ng/mL, linearity with r2 = 0.9991, and recovery values from 92% to 120%. The internal concentration of methamphetamine was quantifiable in whole-body homogenates within 15 min of uptake analysis. The internal concentration increased with time, whereas a biphasic elimination pattern was shown. With increasing length of exposure, a higher accumulation of drugs was found in the head than in the trunk.


Assuntos
Metanfetamina , Perciformes , Animais , Peixe-Zebra , Espectrometria de Massas em Tandem , Anfetamina , Cromatografia Líquida , Larva
9.
Psychopharmacology (Berl) ; 239(12): 3833-3846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269378

RESUMO

RATIONALE: The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches. OBJECTIVES: In this study, we used methamphetamine (METH) as an exemplary psychoactive substance to investigate its acute toxicity and possible underlying mechanisms in 5-day post-fertilization (5 dpf) zebrafish larvae. METHODS: Lethality and toxicity of different concentrations of METH were examined in 5-dpf zebrafish larvae using a 96-well plate format. RESULTS: METH induced lethality in zebrafish larvae in a dose-dependent manner, which was associated with initial sympathomimetic activation, followed by cardiotoxicity. This was evidenced by significant heart rate increases at low doses, followed by decreased cardiac function at high doses and later time points. Levels of ammonia in the excreted water were increased but decreased internally. There was also evidence of seizures. Co-administration of the glutamate AMPA receptor antagonist GYKI-52466 and the dopamine D2 receptor antagonist raclopride significantly attenuated METH-induced lethality, suggesting that this lethality may be mediated synergistically or independently by glutamatergic and dopaminergic systems. CONCLUSIONS: These experiments provide a baseline for the study of the toxicity of related amphetamine compounds in 5-dpf zebrafish as well as a new high-throughput approach for investigating the toxicities of rapidly emerging new psychoactive substances.


Assuntos
Metanfetamina , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Metanfetamina/farmacologia , Larva , Dopamina/farmacologia , Convulsões/induzido quimicamente , Antagonistas de Aminoácidos Excitatórios/farmacologia
10.
J Appl Toxicol ; 31(2): 157-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20737414

RESUMO

Dextromethorphan is widely used in over-the-counter cough and cold medications. Its efficacy and safety for infants and young children remains to be clarified. The present study was designed to use zebrafish as a model to investigate the potential toxicity of dextromethorphan during embryonic and larval development. Three sets of zebrafish embryos/larvae were exposed to dextromethorphan at 24, 48 and 72 h post fertilization (hpf), respectively, during the embryonic/larval development. Compared with the 48 and 72 hpf exposure sets, the embryos/larvae in the 24 hpf exposure set showed much higher mortality rates which increased in a dose-dependent manner. Bradycardia and reduced blood flow were observed for the embryos/larvae treated with increasing concentrations of dextromethorphan. Morphological effects of dextromethorphan exposure, including yolk sac and cardiac edema, craniofacial malformation, lordosis, non-inflated swim bladder and missing gill, were also more frequent and severe among zebrafish embryos/larvae exposed to dextromethorphan at 24 hpf. Whether the more frequent and severe developmental toxicity of dextromethorphan observed among the embryos/larvae in the 24 hpf exposure set, as compared with the 48 and 72 hpf exposure sets, is due to the developmental expression of the phase I and phase II enzymes involved in the metabolism of dextromethorphan remains to be clarified. A reverse transcription-polymerase chain reaction analysis, nevertheless, revealed developmental stage-dependent expression of mRNAs encoding SULT3 ST1 and SULT3 ST3, two enzymes previously shown to be capable of sulfating dextrorphan, an active metabolite of dextromethorphan.


Assuntos
Antitussígenos/toxicidade , Dextrometorfano/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Bradicardia/induzido quimicamente , Bradicardia/embriologia , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/embriologia , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/embriologia , Edema Cardíaco/induzido quimicamente , Edema Cardíaco/embriologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/metabolismo , RNA Mensageiro/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sulfotransferases/genética , Sulfotransferases/metabolismo , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/patologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
ACS Chem Neurosci ; 11(17): 2761-2773, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786314

RESUMO

Photoaffinity labeling (PAL) remains one of the most widely utilized methods of determining protein targets of drugs. Although useful, the scope of this technique has been limited to in vitro applications because of the inability of UV light to penetrate whole organisms. Herein, pigment-free Casper zebrafish were employed to allow in vivo PAL. A methamphetamine-related phenethylamine PAL probe, designated here as 2, demonstrated dose-dependent effects on behavior similar to methamphetamine and permitted concentration-dependent labeling of protein binding partners. Click chemistry was used to analyze binding partners via fluoroimaging. Conjugation to a biotin permitted streptavidin pull-down and proteomic analysis to define direct binding partners of the methamphetamine probe. Bioinformatic analysis revealed the probe was chiefly bound to proteins involved in phagocytosis and mitochondrial function. Future applications of this experimental paradigm combining examination of drug-protein binding interactions alongside neurobehavioral readouts via in vivo PAL will significantly enhance our understanding of drug targets, mechanism(s) of action, and toxicity/lethality.


Assuntos
Metanfetamina , Peixe-Zebra , Animais , Marcadores de Fotoafinidade , Proteínas , Proteômica
12.
Anal Biochem ; 390(1): 88-90, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19351526

RESUMO

A simple methodology for the identification of hemostatic proteins that are subjected to posttranslational tyrosine sulfation was developed. The procedure involves sequence analysis of members of the three hemostatic pathways using the Sulfinator prediction algorithm, followed by [(35)S]sulfate labeling of cultured HepG2 human hepatoma cells, immunoprecipitation of targeted [(35)S]sulfate-labeled hemostatic proteins, and tyrosine O-[(35)S]sulfate analysis of immunoprecipitated proteins. Three new tyrosine-sulfated hemostatic proteins-protein S, prekallikrein, and plasminogen-were identified. Such a target-specific approach will allow investigation of tyrosine-sulfated proteins of other biochemical/physiological pathways/processes and contribute to a better understanding of the functional role of posttranslational tyrosine sulfation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Plasminogênio/química , Pré-Calicreína/química , Proteína S/química , Sulfatos/química , Tirosina/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Isótopos de Enxofre/química
13.
Neurochem Int ; 122: 31-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392874

RESUMO

Currently, no treatments exist that are able to directly treat against Alzheimer's disease (AD), and we are facing an inevitable increase in the near future of the amount of patients who will suffer from AD. Most animal models of AD are limited by not being able to recapitulate the entire pathology of AD. Recently an AD model in zebrafish was established by using the protein phosphatase 2A inhibitor, okadaic acid (OKA). Administering OKA to zebrafish was able to recapitulate most of the neuropathology associated with AD. Therefore, providing a drug discovery model for AD that is also time and cost efficient. This study was designed to investigate the effects of GSK3ß inhibition by 4-benzyl-2-methyl-1, 2, 4-thiadiazolidine-3, 5-dione (TDZD-8) on this newly developed AD model. Fish were divided into 4 groups and each group received a different treatment. The fish were divided into a control group, a group treated with 1 µM TDZD-8 only, a group treated with 1 µM TDZD-8 + 100 nM OKA, and a group treated with 100 nM OKA only. Administering the GSK3ß inhibitor to zebrafish concomitantly with OKA proved to be protective. TDZD-8 treatment reduced the mortality rate, the ratio of active: inactive GSK3ß, pTau (Ser199), and restored PP2A activity. This further corroborates the use of GSKß inhibitors in the treatment against AD and bolsters the use of the OKA-induced AD-like zebrafish model for drug discovery.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/irrigação sanguínea , Glicogênio Sintase Quinase 3 beta/farmacologia , Tiadiazóis/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Okadáico/farmacologia , Peixe-Zebra , Proteínas tau/metabolismo
14.
J Steroid Biochem Mol Biol ; 185: 110-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118815

RESUMO

Steroid sulfatase (STS) plays an important role in the regulation of steroid hormones. Metabolism of steroid hormones in zebrafish has been investigated, but the action of steroid sulfatase remains unknown. In this study, a zebrafish sts was cloned, expressed, purified, and characterized in comparison with the orthologous human enzyme. Enzymatic assays demonstrated that similar to human STS, zebrafish Sts was most active in catalyzing the hydrolysis of estrone-sulfate and estradiol-sulfate, among five steroid sulfates tested as substrates. Kinetic analyses revealed that the Km values of zebrafish Sts and human STS differed with respective substrates, but the catalytic efficiency as reflected by the Vmax/Km appeared comparable, except for DHEA-sulfate with which zebrafish Sts appeared less efficient. While zebrafish Sts was catalytically active at 28 °C, the enzyme appeared more active at 37 °C and with similar Km values to those determined at 28 °C. Assays performed in the presence of different divalent cations showed that the activities of both zebrafish and human STSs were stimulated by Ca2+, Mg2+, and Mn2+, and inhibited by Zn+2 and Fe2+. EMATE and STX64, two known mammalian steroid sulafatase inhibitors, were shown to be capable of inhibiting the activity of zebrafish Sts. Collectively, the results obtained indicated that zebrafish Sts exhibited enzymatic characteristics comparable to the human STS, suggesting that the physiological function of STS may be conserved between zebrafish and humans.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Estradiol/análogos & derivados , Estrona/análogos & derivados , Esteril-Sulfatase/genética , Esteril-Sulfatase/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Cátions/metabolismo , Clonagem Molecular/métodos , Inibidores Enzimáticos/farmacologia , Estradiol/metabolismo , Estrona/metabolismo , Humanos , Esteril-Sulfatase/antagonistas & inibidores , Peixe-Zebra
15.
Cancers (Basel) ; 11(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126091

RESUMO

Thienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-d]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC50 < 1 µM). The cytotoxicity of RP-010 was significantly lower in non-PC, CHO, and CRL-1459 cell lines. RP-010 (0.5, 1, 2, and 4 µM) arrested prostate cancer cells in G2 phase of the cell cycle, and induced mitotic catastrophe and apoptosis in both PC cell lines. Mechanistic studies suggested that RP-010 (1 and 2 µM) affected the wingless-type MMTV (Wnt)/ß-catenin signaling pathway, in association with ß-catenin fragmentation, while also downregulating important proteins in the pathway, including LRP-6, DVL3, and c-Myc. Interestingly, RP-010 (1 and 2 µM) induced nuclear translocation of the negative feedback proteins, Naked 1 and Naked 2, in the Wnt pathway. In addition, RP-010 (0.5, 1, 2 and 4 µM) significantly decreased the migration of PC cells in vitro. Finally, RP-010 did not produce significant toxic effects in zebrafish at concentrations of up to 6 µM. In conclusion, RP-010 may be an efficacious and relatively nontoxic anticancer compound for prostate cancer. Future mechanistic and in vivo efficacy studies are needed to optimize the hit compound RP-010 for lead optimization and clinical use.

16.
Mol Cell Endocrinol ; 294(1-2): 29-36, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18644423

RESUMO

In vertebrates, sulfation as catalyzed by members of the cytosolic sulfotransferase (SULT) family has been suggested to be involved in the homeostasis of steroids. To establish the zebrafish as a model for investigating how sulfation functions to regulate steroid metabolism during the developmental process, we have embarked on the identification of steroid-sulfating SULTs in zebrafish. By searching the GenBank database, we identified two putative cytosolic SULT sequences from zebrafish, designated SULT3 ST1 and ST2. The recombinant proteins of these two zebrafish SULT3 STs were expressed in and purified from BL21 (DE3) cells transformed with the pGEX-2TK expression vector harboring SULT3 ST1 or ST2 cDNA. Upon enzymatic characterization, purified SULT3 ST1 displayed the strongest sulfating activity toward 17beta-estradiol among the endogenous substrates tested, while SULT3 ST2 exhibited substrate specificity toward hydroxysteroids, particularly dehydroepiandrosterone (DHEA). The pH-dependence and kinetic constants of these two enzymes with 17beta-estradiol and DHEA were determined. A developmental expression study revealed distinct patterns of the expression of SULT3 ST1 and ST2 during embryonic development and throughout the larval stage onto maturity. Collectively, these results imply that these two steroid-sulfating SULT3 STs may play differential roles in the metabolism and regulation of steroids during zebrafish development and in adulthood.


Assuntos
Esteroides/metabolismo , Sulfatos/metabolismo , Sulfotransferases/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Citosol/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sulfotransferases/química , Sulfotransferases/isolamento & purificação , Sulfotransferases/metabolismo , Xenobióticos/metabolismo
17.
Aquat Toxicol ; 89(2): 94-102, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18632167

RESUMO

Cytosolic sulfotransferases (SULTs) constitute a family of Phase II detoxification enzymes that are involved in the protection against potentially harmful xenobiotics as well as the regulation and homeostasis of endogenous compounds. Compared with humans and rodents, the zebrafish serves as an excellent model for studying the role of SULTs in the detoxification of environmental pollutants including environmental estrogens. By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative SULTs were identified. Sequence analysis indicated that these two putative zebrafish SULTs belong to the SULT1 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT1 ST7 and SULT1 ST8, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) cells. Purified GST-fusion protein form of SULT1 ST7 and SULT1 ST8 exhibited strong sulfating activities toward environmental estrogens, particularly hydroxylated polychlorinated biphenyls (PCBs), among various endogenous and xenobiotic compounds tested as substrates. pH-dependence experiments showed that SULT1 ST7 and SULT1 ST8 displayed pH optima at 6.5 and 8.0, respectively. Kinetic parameters of the two enzymes in catalyzing the sulfation of catechin and chlorogenic acid as well as 3-chloro-4-biphenylol were determined. Developmental expression experiments revealed distinct patterns of expression of SULT1 ST7 and SULT1 ST8 during embryonic development and throughout the larval stage onto maturity.


Assuntos
Arilsulfotransferase/genética , Arilsulfotransferase/isolamento & purificação , Citosol/enzimologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/isolamento & purificação , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Arilsulfotransferase/metabolismo , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Larva , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Maturidade Sexual/genética , Xenobióticos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
18.
Neural Regen Res ; 13(9): 1538-1541, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30127109

RESUMO

Despite the many years of extensive research using rodent models to study Alzheimer's disease (AD), no cure or disease halting drug exists. An increasing number of people are suffering from the disease and a therapeutic intervention is needed. Therefore, it is necessary to have complementary models to aid in the drug discovery. The zebrafish animal model is emerging as a valuable model for the investigation of AD and neurodegenerative drug discovery. The main genes involved in human AD have homologous counterparts in zebrafish and have conserved function. The basic brain structure of the zebrafish is also conserved when compared to the mammalian brain. Recently an AD model was established by administering okadaic acid to zebrafish. It was used to test the efficacy of a novel drug, lanthionine ketimine-5-ethyl ester, and to elucidate its mechanism of action. This demonstrated the ability of the okadaic acid-induced AD zebrafish model to be implemented in the drug discovery process for therapeutics against AD.

19.
Neurochem Int ; 115: 61-68, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29475037

RESUMO

Okadaic acid (OKA) is a protein phosphatase 2A inhibitor that is used to induce neurodegeneration and study disease states such as Alzheimer's disease (AD). Lanthionine ketimine-5-ethyl ester (LKE) is a bioavailable derivative of the naturally occurring brain sulfur metabolite, lanthionine ketimine (LK). In previously conducted studies, LKE exhibited neuroprotective and neurotrophic properties in murine models but its mechanism of action remains to be clarified. In this study, a recently established zebrafish OKA-induced AD model was utilized to further elucidate the neuroprotective and neurotrophic properties of LKE in the context of an AD-like condition. The fish were divided into 3 groups containing 8 fish per group. Group #1 = negative control, Group #2 = 100 nM OKA, Group #3 = 100 nM OKA +500 µM LKE. OKA caused severe cognitive impairments in the zebrafish, but concomitant treatment with LKE protected against cognitive impairments. Further, LKE significantly and substantially reduced the number of apoptotic brain cells, increased brain-derived neurotrophic factor (BDNF), and increased phospho-activation of the pro-survival factors pAkt (Ser 473) and pCREB (Ser133). These findings clarify the neuroprotective and neurotrophic effects of LKE by highlighting particular survival pathways that are bolstered by the experimental therapeutic LKE.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminoácidos Sulfúricos/farmacologia , Neuroproteção/efeitos dos fármacos , Ácido Okadáico/farmacologia , Doença de Alzheimer/induzido quimicamente , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Peixe-Zebra
20.
Front Pharmacol ; 9: 340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692731

RESUMO

The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5-10 µM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10-20 and 50 µM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA