Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Res Methodol ; 22(1): 35, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35094685

RESUMO

BACKGROUND: We investigated whether we could use influenza data to develop prediction models for COVID-19 to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We developed COVID-19 Estimated Risk (COVER) scores that quantify a patient's risk of hospital admission with pneumonia (COVER-H), hospitalization with pneumonia requiring intensive services or death (COVER-I), or fatality (COVER-F) in the 30-days following COVID-19 diagnosis using historical data from patients with influenza or flu-like symptoms and tested this in COVID-19 patients. METHODS: We analyzed a federated network of electronic medical records and administrative claims data from 14 data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2-step process to develop 3 scores using historical data from patients with influenza or flu-like symptoms any time prior to 2020. The first step was to create a data-driven model using LASSO regularized logistic regression, the covariates of which were used to develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu-like symptoms and 2) confirmed or suspected COVID-19 diagnosis across 5 databases from South Korea, Spain, and the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 days after index date. RESULTS: Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated which patients would experience any of our three outcomes. The models achieved good performance in influenza and COVID-19 cohorts. For COVID-19 the AUC ranges were, COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration varied across the validations with some of the COVID-19 validations being less well calibrated than the influenza validations. CONCLUSIONS: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 COVER models with 9-predictors that were developed using influenza data perform well for COVID-19 patients for predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which transferred well to the COVID-19 population. There was some miscalibration in the COVID-19 validations, which is potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to recalibrate the models in each location before use.


Assuntos
COVID-19 , Influenza Humana , Pneumonia , Teste para COVID-19 , Humanos , Influenza Humana/epidemiologia , SARS-CoV-2 , Estados Unidos
2.
BMC Med Inform Decis Mak ; 22(1): 142, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614485

RESUMO

BACKGROUND: Prognostic models that are accurate could help aid medical decision making. Large observational databases often contain temporal medical data for large and diverse populations of patients. It may be possible to learn prognostic models using the large observational data. Often the performance of a prognostic model undesirably worsens when transported to a different database (or into a clinical setting). In this study we investigate different ensemble approaches that combine prognostic models independently developed using different databases (a simple federated learning approach) to determine whether ensembles that combine models developed across databases can improve model transportability (perform better in new data than single database models)? METHODS: For a given prediction question we independently trained five single database models each using a different observational healthcare database. We then developed and investigated numerous ensemble models (fusion, stacking and mixture of experts) that combined the different database models. Performance of each model was investigated via discrimination and calibration using a leave one dataset out technique, i.e., hold out one database to use for validation and use the remaining four datasets for model development. The internal validation of a model developed using the hold out database was calculated and presented as the 'internal benchmark' for comparison. RESULTS: In this study the fusion ensembles generally outperformed the single database models when transported to a previously unseen database and the performances were more consistent across unseen databases. Stacking ensembles performed poorly in terms of discrimination when the labels in the unseen database were limited. Calibration was consistently poor when both ensembles and single database models were applied to previously unseen databases. CONCLUSION: A simple federated learning approach that implements ensemble techniques to combine models independently developed across different databases for the same prediction question may improve the discriminative performance in new data (new database or clinical setting) but will need to be recalibrated using the new data. This could help medical decision making by improving prognostic model performance.


Assuntos
Atenção à Saúde , Calibragem , Bases de Dados Factuais , Humanos , Prognóstico
3.
Knee Surg Sports Traumatol Arthrosc ; 30(9): 3068-3075, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34870731

RESUMO

PURPOSE: The purpose of this study was to develop and validate a prediction model for 90-day mortality following a total knee replacement (TKR). TKR is a safe and cost-effective surgical procedure for treating severe knee osteoarthritis (OA). Although complications following surgery are rare, prediction tools could help identify high-risk patients who could be targeted with preventative interventions. The aim was to develop and validate a simple model to help inform treatment choices. METHODS: A mortality prediction model for knee OA patients following TKR was developed and externally validated using a US claims database and a UK general practice database. The target population consisted of patients undergoing a primary TKR for knee OA, aged ≥ 40 years and registered for ≥ 1 year before surgery. LASSO logistic regression models were developed for post-operative (90-day) mortality. A second mortality model was developed with a reduced feature set to increase interpretability and usability. RESULTS: A total of 193,615 patients were included, with 40,950 in The Health Improvement Network (THIN) database and 152,665 in Optum. The full model predicting 90-day mortality yielded AUROC of 0.78 when trained in OPTUM and 0.70 when externally validated on THIN. The 12 variable model achieved internal AUROC of 0.77 and external AUROC of 0.71 in THIN. CONCLUSIONS: A simple prediction model based on sex, age, and 10 comorbidities that can identify patients at high risk of short-term mortality following TKR was developed that demonstrated good, robust performance. The 12-feature mortality model is easily implemented and the performance suggests it could be used to inform evidence based shared decision-making prior to surgery and targeting prophylaxis for those at high risk. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia do Joelho , Osteoartrite do Joelho , Criança , Bases de Dados Factuais , Humanos
4.
BMC Med Res Methodol ; 20(1): 102, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375693

RESUMO

BACKGROUND: To demonstrate how the Observational Healthcare Data Science and Informatics (OHDSI) collaborative network and standardization can be utilized to scale-up external validation of patient-level prediction models by enabling validation across a large number of heterogeneous observational healthcare datasets. METHODS: Five previously published prognostic models (ATRIA, CHADS2, CHADS2VASC, Q-Stroke and Framingham) that predict future risk of stroke in patients with atrial fibrillation were replicated using the OHDSI frameworks. A network study was run that enabled the five models to be externally validated across nine observational healthcare datasets spanning three countries and five independent sites. RESULTS: The five existing models were able to be integrated into the OHDSI framework for patient-level prediction and they obtained mean c-statistics ranging between 0.57-0.63 across the 6 databases with sufficient data to predict stroke within 1 year of initial atrial fibrillation diagnosis for females with atrial fibrillation. This was comparable with existing validation studies. The validation network study was run across nine datasets within 60 days once the models were replicated. An R package for the study was published at https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ExistingStrokeRiskExternalValidation. CONCLUSION: This study demonstrates the ability to scale up external validation of patient-level prediction models using a collaboration of researchers and a data standardization that enable models to be readily shared across data sites. External validation is necessary to understand the transportability or reproducibility of a prediction model, but without collaborative approaches it can take three or more years for a model to be validated by one independent researcher. In this paper we show it is possible to both scale-up and speed-up external validation by showing how validation can be done across multiple databases in less than 2 months. We recommend that researchers developing new prediction models use the OHDSI network to externally validate their models.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Estudos de Viabilidade , Feminino , Humanos , Prognóstico , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia
5.
Stud Health Technol Inform ; 310: 966-970, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269952

RESUMO

The Health-Analytics Data to Evidence Suite (HADES) is an open-source software collection developed by Observational Health Data Sciences and Informatics (OHDSI). It executes directly against healthcare data such as electronic health records and administrative claims, that have been converted to the Observational Medical Outcomes Partnership (OMOP) Common Data Model. Using advanced analytics, HADES performs characterization, population-level causal effect estimation, and patient-level prediction, potentially across a federated data network, allowing patient-level data to remain locally while only aggregated statistics are shared. Designed to run across a wide array of technical environments, including different operating systems and database platforms, HADES uses continuous integration with a large set of unit tests to maintain reliability. HADES implements OHDSI best practices, and is used in almost all published OHDSI studies, including some that have directly informed regulatory decisions.


Assuntos
Ciência de Dados , Registros Eletrônicos de Saúde , Humanos , Bases de Dados Factuais , Reprodutibilidade dos Testes , Software , Estudos Observacionais como Assunto
6.
Stud Health Technol Inform ; 302: 139-140, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203630

RESUMO

The Deposit, Evaluate and Lookup Predictive Healthcare Information (DELPHI) library provides a centralised location for the depositing, exploring and analysing of patient-level prediction models that are compatible with data mapped to the observational medical outcomes partnership common data model.

7.
Stud Health Technol Inform ; 302: 129-130, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203625

RESUMO

We investigated a stacking ensemble method that combines multiple base learners within a database. The results on external validation across four large databases suggest a stacking ensemble could improve model transportability.


Assuntos
Bases de Dados Factuais
8.
Drug Saf ; 45(5): 563-570, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579818

RESUMO

INTRODUCTION: External validation of prediction models is increasingly being seen as a minimum requirement for acceptance in clinical practice. However, the lack of interoperability of healthcare databases has been the biggest barrier to this occurring on a large scale. Recent improvements in database interoperability enable a standardized analytical framework for model development and external validation. External validation of a model in a new database lacks context, whereby the external validation can be compared with a benchmark in this database. Iterative pairwise external validation (IPEV) is a framework that uses a rotating model development and validation approach to contextualize the assessment of performance across a network of databases. As a use case, we predicted 1-year risk of heart failure in patients with type 2 diabetes mellitus. METHODS: The method follows a two-step process involving (1) development of baseline and data-driven models in each database according to best practices and (2) validation of these models across the remaining databases. We introduce a heatmap visualization that supports the assessment of the internal and external model performance in all available databases. As a use case, we developed and validated models to predict 1-year risk of heart failure in patients initializing a second pharmacological intervention for type 2 diabetes mellitus. We leveraged the power of the Observational Medical Outcomes Partnership common data model to create an open-source software package to increase the consistency, speed, and transparency of this process. RESULTS: A total of 403,187 patients from five databases were included in the study. We developed five models that, when assessed internally, had a discriminative performance ranging from 0.73 to 0.81 area under the receiver operating characteristic curve with acceptable calibration. When we externally validated these models in a new database, three models achieved consistent performance and in context often performed similarly to models developed in the database itself. The visualization of IPEV provided valuable insights. From this, we identified the model developed in the Commercial Claims and Encounters (CCAE) database as the best performing model overall. CONCLUSION: Using IPEV lends weight to the model development process. The rotation of development through multiple databases provides context to model assessment, leading to improved understanding of transportability and generalizability. The inclusion of a baseline model in all modelling steps provides further context to the performance gains of increasing model complexity. The CCAE model was identified as a candidate for clinical use. The use case demonstrates that IPEV provides a huge opportunity in a new era of standardised data and analytics to improve insight into and trust in prediction models at an unprecedented scale.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/epidemiologia , Insuficiência Cardíaca/epidemiologia , Humanos , Software
9.
J Am Med Inform Assoc ; 29(7): 1292-1302, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35475536

RESUMO

OBJECTIVE: This systematic review aims to assess how information from unstructured text is used to develop and validate clinical prognostic prediction models. We summarize the prediction problems and methodological landscape and determine whether using text data in addition to more commonly used structured data improves the prediction performance. MATERIALS AND METHODS: We searched Embase, MEDLINE, Web of Science, and Google Scholar to identify studies that developed prognostic prediction models using information extracted from unstructured text in a data-driven manner, published in the period from January 2005 to March 2021. Data items were extracted, analyzed, and a meta-analysis of the model performance was carried out to assess the added value of text to structured-data models. RESULTS: We identified 126 studies that described 145 clinical prediction problems. Combining text and structured data improved model performance, compared with using only text or only structured data. In these studies, a wide variety of dense and sparse numeric text representations were combined with both deep learning and more traditional machine learning methods. External validation, public availability, and attention for the explainability of the developed models were limited. CONCLUSION: The use of unstructured text in the development of prognostic prediction models has been found beneficial in addition to structured data in most studies. The text data are source of valuable information for prediction model development and should not be neglected. We suggest a future focus on explainability and external validation of the developed models, promoting robust and trustworthy prediction models in clinical practice.


Assuntos
Aprendizado de Máquina , Prognóstico
10.
J Am Med Inform Assoc ; 29(5): 983-989, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35045179

RESUMO

OBJECTIVES: This systematic review aims to provide further insights into the conduct and reporting of clinical prediction model development and validation over time. We focus on assessing the reporting of information necessary to enable external validation by other investigators. MATERIALS AND METHODS: We searched Embase, Medline, Web-of-Science, Cochrane Library, and Google Scholar to identify studies that developed 1 or more multivariable prognostic prediction models using electronic health record (EHR) data published in the period 2009-2019. RESULTS: We identified 422 studies that developed a total of 579 clinical prediction models using EHR data. We observed a steep increase over the years in the number of developed models. The percentage of models externally validated in the same paper remained at around 10%. Throughout 2009-2019, for both the target population and the outcome definitions, code lists were provided for less than 20% of the models. For about half of the models that were developed using regression analysis, the final model was not completely presented. DISCUSSION: Overall, we observed limited improvement over time in the conduct and reporting of clinical prediction model development and validation. In particular, the prediction problem definition was often not clearly reported, and the final model was often not completely presented. CONCLUSION: Improvement in the reporting of information necessary to enable external validation by other investigators is still urgently needed to increase clinical adoption of developed models.


Assuntos
Modelos Estatísticos , Prognóstico
11.
Semin Arthritis Rheum ; 56: 152050, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728447

RESUMO

BACKGROUND: Identification of rheumatoid arthritis (RA) patients at high risk of adverse health outcomes remains a major challenge. We aimed to develop and validate prediction models for a variety of adverse health outcomes in RA patients initiating first-line methotrexate (MTX) monotherapy. METHODS: Data from 15 claims and electronic health record databases across 9 countries were used. Models were developed and internally validated on Optum® De-identified Clinformatics® Data Mart Database using L1-regularized logistic regression to estimate the risk of adverse health outcomes within 3 months (leukopenia, pancytopenia, infection), 2 years (myocardial infarction (MI) and stroke), and 5 years (cancers [colorectal, breast, uterine] after treatment initiation. Candidate predictors included demographic variables and past medical history. Models were externally validated on all other databases. Performance was assessed using the area under the receiver operator characteristic curve (AUC) and calibration plots. FINDINGS: Models were developed and internally validated on 21,547 RA patients and externally validated on 131,928 RA patients. Models for serious infection (AUC: internal 0.74, external ranging from 0.62 to 0.83), MI (AUC: internal 0.76, external ranging from 0.56 to 0.82), and stroke (AUC: internal 0.77, external ranging from 0.63 to 0.95), showed good discrimination and adequate calibration. Models for the other outcomes showed modest internal discrimination (AUC < 0.65) and were not externally validated. INTERPRETATION: We developed and validated prediction models for a variety of adverse health outcomes in RA patients initiating first-line MTX monotherapy. Final models for serious infection, MI, and stroke demonstrated good performance across multiple databases and can be studied for clinical use. FUNDING: This activity under the European Health Data & Evidence Network (EHDEN) has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 806968. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Acidente Vascular Cerebral , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Estudos de Coortes , Humanos , Metotrexato/uso terapêutico , Avaliação de Resultados em Cuidados de Saúde , Acidente Vascular Cerebral/etiologia
12.
Rheumatol Adv Pract ; 5(3): rkab087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888435

RESUMO

OBJECTIVES: The aim was to develop a prediction model of sustained remission after cessation of biologic or targeted synthetic DMARD (b/tsDMARD) in RA. METHODS: We conducted an explorative cohort study among b/tsDMARD RA treatment episode courses stopped owing to remission in the Swiss Clinical Quality Management registry (SCQM; 2008-2019). The outcome was sustained b/tsDMARD-free remission of ≥12 months. We applied logistic regression model selection algorithms using stepwise, forward selection, backward selection and penalized regression to identify patient characteristics predictive of sustained b/tsDMARD-free remission. We compared c-statistics corrected for optimism between models. The three models with the highest c-statistics were validated in new SCQM data until 2020 (validation dataset). RESULTS: We identified 302 eligible episodes, of which 177 episodes (59%) achieved sustained b/tsDMARD-free remission. Two backward and one forward selection model, with eight, four and seven variables, respectively, obtained the highest c-statistics corrected for optimism of c = 0.72, c = 0.70 and c = 0.69, respectively. In the validation dataset (47 eligible episodes), the models performed with c = 0.99, c = 0.80 and c = 0.74, respectively, and excellent calibration. The best model included the following eight variables (measured at b/tsDMARD stop): RA duration, b/tsDMARD duration, other pain/anti-inflammatory drug use, quality of life (EuroQol), DAS28-ESR score, HAQ score, education, and interactions of RA duration and other pain/anti-inflammatory drug use and of b/tsDMARD duration and HAQ score. CONCLUSION: Our results suggest that models with up to eight unique variables may predict sustained b/tsDMARD-free remission with good efficiency. External validation is warranted.

13.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33342753

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

14.
JMIR Med Inform ; 9(4): e21547, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33661754

RESUMO

BACKGROUND: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the "prediction model risk of bias assessment" criteria, and it has not been externally validated. OBJECTIVE: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases. METHODS: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States, Europe, Australia, and Asia. RESULTS: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor, with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network, the C statistics ranged between 0.40 and 0.68. CONCLUSIONS: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

15.
PLoS One ; 15(1): e0226718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910437

RESUMO

BACKGROUND AND PURPOSE: Hemorrhagic transformation (HT) after cerebral infarction is a complex and multifactorial phenomenon in the acute stage of ischemic stroke, and often results in a poor prognosis. Thus, identifying risk factors and making an early prediction of HT in acute cerebral infarction contributes not only to the selections of therapeutic regimen but also, more importantly, to the improvement of prognosis of acute cerebral infarction. The purpose of this study was to develop and validate a model to predict a patient's risk of HT within 30 days of initial ischemic stroke. METHODS: We utilized a retrospective multicenter observational cohort study design to develop a Lasso Logistic Regression prediction model with a large, US Electronic Health Record dataset which structured to the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). To examine clinical transportability, the model was externally validated across 10 additional real-world healthcare datasets include EHR records for patients from America, Europe and Asia. RESULTS: In the database the model was developed, the target population cohort contained 621,178 patients with ischemic stroke, of which 5,624 patients had HT within 30 days following initial ischemic stroke. 612 risk predictors, including the distance a patient travels in an ambulance to get to care for a HT, were identified. An area under the receiver operating characteristic curve (AUC) of 0.75 was achieved in the internal validation of the risk model. External validation was performed across 10 databases totaling 5,515,508 patients with ischemic stroke, of which 86,401 patients had HT within 30 days following initial ischemic stroke. The mean external AUC was 0.71 and ranged between 0.60-0.78. CONCLUSIONS: A HT prognostic predict model was developed with Lasso Logistic Regression based on routinely collected EMR data. This model can identify patients who have a higher risk of HT than the population average with an AUC of 0.78. It shows the OMOP CDM is an appropriate data standard for EMR secondary use in clinical multicenter research for prognostic prediction model development and validation. In the future, combining this model with clinical information systems will assist clinicians to make the right therapy decision for patients with acute ischemic stroke.


Assuntos
Isquemia Encefálica/complicações , Hemorragia Cerebral/diagnóstico , Modelos Estatísticos , Medição de Risco/métodos , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/etiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco
16.
medRxiv ; 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32587982

RESUMO

INTRODUCTION: Angiotensin converting enzyme inhibitors (ACEs) and angiotensin receptor blockers (ARBs) could influence infection risk of coronavirus disease (COVID-19). Observational studies to date lack pre-specification, transparency, rigorous ascertainment adjustment and international generalizability, with contradictory results. METHODS: Using electronic health records from Spain (SIDIAP) and the United States (Columbia University Irving Medical Center and Department of Veterans Affairs), we conducted a systematic cohort study with prevalent ACE, ARB, calcium channel blocker (CCB) and thiazide diuretic (THZ) use to determine relative risk of COVID-19 diagnosis and related hospitalization outcomes. The study addressed confounding through large-scale propensity score adjustment and negative control experiments. RESULTS: Following over 1.1 million antihypertensive users identified between November 2019 and January 2020, we observed no significant difference in relative COVID-19 diagnosis risk comparing ACE/ARB vs CCB/THZ monotherapy (hazard ratio: 0.98; 95% CI 0.84 - 1.14), nor any difference for mono/combination use (1.01; 0.90 - 1.15). ACE alone and ARB alone similarly showed no relative risk difference when compared to CCB/THZ monotherapy or mono/combination use. Directly comparing ACE vs. ARB demonstrated a moderately lower risk with ACE, non-significant for monotherapy (0.85; 0.69 - 1.05) and marginally significant for mono/combination users (0.88; 0.79 - 0.99). We observed, however, no significant difference between drug- classes for COVID-19 hospitalization or pneumonia risk across all comparisons. CONCLUSION: There is no clinically significant increased risk of COVID-19 diagnosis or hospitalization with ACE or ARB use. Users should not discontinue or change their treatment to avoid COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA