Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 155(2): 333-44, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120134

RESUMO

Primary cilia are key sensory organelles that are thought to be disassembled prior to mitosis. Inheritance of the mother centriole, which nucleates the primary cilium, in relation to asymmetric daughter cell behavior has previously been studied. However, the fate of the ciliary membrane upon cell division is unknown. Here, we followed the ciliary membrane in dividing embryonic neocortical stem cells and cultured cells. Ciliary membrane attached to the mother centriole was endocytosed at mitosis onset, persisted through mitosis at one spindle pole, and was asymmetrically inherited by one daughter cell, which retained stem cell character. This daughter re-established a primary cilium harboring an activated signal transducer earlier than the noninheriting daughter. Centrosomal association of ciliary membrane in dividing neural stem cells decreased at late neurogenesis when these cells differentiate. Our data imply that centrosome-associated ciliary membrane acts as a determinant for the temporal-spatial control of ciliogenesis.


Assuntos
Divisão Celular , Cílios/metabolismo , Células-Tronco Neurais/citologia , Fatores de Ribosilação do ADP , Animais , Centríolos/metabolismo , Centrossomo/metabolismo , Células HEK293 , Humanos , Camundongos , Mitose , Células-Tronco Neurais/metabolismo
2.
Nature ; 580(7802): 263-268, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269334

RESUMO

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Intestinos/fisiologia , Zinco/metabolismo , Animais , Drosophila melanogaster/genética , Enterócitos/metabolismo , Feminino , Preferências Alimentares , Homeostase , Insetos Vetores , Insulina/metabolismo , Ativação do Canal Iônico , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lisossomos/metabolismo , Masculino , Oócitos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Xenopus
3.
EMBO J ; 40(19): e108041, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431536

RESUMO

The role of WNT/ß-catenin signalling in mouse neocortex development remains ambiguous. Most studies demonstrate that WNT/ß-catenin regulates progenitor self-renewal but others suggest it can also promote differentiation. Here we explore the role of WNT/STOP signalling, which stabilizes proteins during G2/M by inhibiting glycogen synthase kinase (GSK3)-mediated protein degradation. We show that mice mutant for cyclin Y and cyclin Y-like 1 (Ccny/l1), key regulators of WNT/STOP signalling, display reduced neurogenesis in the developing neocortex. Specifically, basal progenitors, which exhibit delayed cell cycle progression, were drastically decreased. Ccny/l1-deficient apical progenitors show reduced asymmetric division due to an increase in apical-basal astral microtubules. We identify the neurogenic transcription factors Sox4 and Sox11 as direct GSK3 targets that are stabilized by WNT/STOP signalling in basal progenitors during mitosis and that promote neuron generation. Our work reveals that WNT/STOP signalling drives cortical neurogenesis and identifies mitosis as a critical phase for neural progenitor fate.


Assuntos
Mitose , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Biomarcadores , Ciclo Celular , Diferenciação Celular/genética , Ciclinas/genética , Ciclinas/metabolismo , Embrião de Mamíferos , Imunofluorescência , Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mitose/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fosforilação , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
4.
Nature ; 567(7746): 113-117, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787442

RESUMO

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Assuntos
Centrossomo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Microtúbulos/metabolismo , Neurogênese , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Movimento Celular , Células Cultivadas , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Junções Intercelulares/metabolismo , Interfase , Ventrículos Laterais/anatomia & histologia , Glândulas Mamárias Animais/citologia , Camundongos , Tamanho do Órgão , Organoides/citologia
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042817

RESUMO

Biofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial, for example, in agricultural as well as in food technology contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity, the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level; however, the molecular structures and elemental distribution across whole biofilms, as well as possible linkages between them, remain unexplored. Mapping X-ray diffraction across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores, and water. By simultaneously following the X-ray fluorescence signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese, and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and may possibly lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution, and sporulation across whole, intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/metabolismo , Matriz Extracelular/fisiologia , Íons/metabolismo , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Raios X
6.
Cell Commun Signal ; 22(1): 57, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243233

RESUMO

BACKGROUND: The incidence of melanoma is increasing worldwide. Since metastatic melanoma is highly aggressive, it is important to decipher all the biological aspects of melanoma cells. In this context, we have previously shown that metastatic FEMX-I melanoma cells release small (< 150 nm) extracellular vesicles (EVs) known as exosomes and ectosomes containing the stem (and cancer stem) cell antigenic marker CD133. EVs play an important role in intercellular communication, which could have a micro-environmental impact on surrounding tissues. RESULTS: We report here a new type of large CD133+ EVs released by FEMX-I cells. Their sizes range from 2 to 6 µm and they contain lipid droplets and mitochondria. Real-time video microscopy revealed that these EVs originate from the lipid droplet-enriched cell extremities that did not completely retract during the cell division process. Once released, they can be taken up by other cells. Silencing CD133 significantly affected the cellular distribution of lipid droplets, with a re-localization around the nuclear compartment. As a result, the formation of large EVs containing lipid droplets was severely compromised. CONCLUSION: Given the biochemical effect of lipid droplets and mitochondria and/or their complexes on cell metabolism, the release and uptake of these new large CD133+ EVs from dividing aggressive melanoma cells can influence both donor and recipient cells, and therefore impact melanoma growth and dissemination.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Melanoma/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Vesículas Extracelulares/metabolismo , Divisão Celular , Mitocôndrias/metabolismo
7.
Traffic ; 20(1): 39-60, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328220

RESUMO

Prominin-1 is a cell surface biomarker that allows the identification of stem and cancer stem cells from different organs. It is also expressed in several differentiated epithelial and non-epithelial cells. Irrespective of the cell type, prominin-1 is associated with plasma membrane protrusions. Here, we investigate its impact on the architecture of membrane protrusions using microvilli of Madin-Darby canine kidney cells as the main model. Our high-resolution analysis revealed that upon the overexpression of prominin-1 the number of microvilli and clusters of them increased. Microvilli with branched and/or knob-like morphologies were observed and stimulated by mutations in the ganglioside-binding site of prominin-1. The altered phenotypes were caused by the interaction of prominin-1 with phosphoinositide 3-kinase and Arp2/3 complex. Mutation of tyrosine 828 of prominin-1 impaired its phosphorylation and thereby inhibited the aforementioned interactions abolishing altered microvilli. This suggests that the interplay of prominin-1-ganglioside membrane complexes, phosphoinositide 3-kinase and cytoskeleton components regulates microvillar architecture. Lastly, the expression of prominin-1 and its mutants modified the structure of filopodia emerging from fibroblast-like cells and silencing human prominin-1 in primary hematopoietic stem cells resulted in the loss of uropod-associated microvilli. Altogether, these findings strengthen the role of prominin-1 as an organizer of cellular protrusions.


Assuntos
Antígeno AC133/metabolismo , Microvilosidades/metabolismo , Antígeno AC133/química , Antígeno AC133/genética , Animais , Sítios de Ligação , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cães , Gangliosídeos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/ultraestrutura , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica
8.
Biochem Soc Trans ; 49(5): 1997-2006, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397081

RESUMO

The mammalian neocortex is the seat of higher cognitive functions, such as thinking and language in human. A hallmark of the neocortex are the cortical neurons, which are generated from divisions of neural progenitor cells (NPCs) during development, and which constitute a key feature of the well-organized layered structure of the neocortex. Proper formation of neocortex structure requires an orchestrated cellular behavior of different cortical NPCs during development, especially during the process of cortical neurogenesis. Here, we review the great diversity of NPCs and their contribution to the development of the neocortex. First, we review the categorization of NPCs into different classes and types based on their cell biological features, and discuss recent advances in characterizing marker expression and cell polarity features in the different types of NPCs. Second, we review the different modes of cell divisions that NPCs undergo and discuss the importance of the balance between proliferation and differentiation of NPCs in neocortical development. Third, we review the different proliferative capacities among different NPC types and among the same type of NPC in different mammalian species. Dissecting the differences between NPC types and differences among mammalian species is beneficial to further understand the development and the evolutionary expansion of the neocortex and may open up new therapeutic avenues for neurodevelopmental and psychiatric disorders.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Evolução Biológica , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Humanos , Células-Tronco Neurais/classificação , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia
9.
EMBO J ; 35(9): 942-60, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26933123

RESUMO

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Cílios/genética , Cílios/fisiologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Camundongos , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 112(51): 15672-7, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644564

RESUMO

Cerebral organoids-3D cultures of human cerebral tissue derived from pluripotent stem cells-have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/embriologia , Organoides/fisiologia , Diferenciação Celular , Linhagem da Célula , Humanos , Análise de Sequência de RNA , Análise de Célula Única , Técnicas de Cultura de Tecidos
11.
Development ; 141(4): 795-806, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496617

RESUMO

Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvß3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvß3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvß3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvß3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvß3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvß3. Convergence of ECM and thyroid hormones on integrin αvß3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.


Assuntos
Integrina alfaVbeta3/metabolismo , Neocórtex/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Matriz Extracelular/metabolismo , Citometria de Fluxo , Fluorescência , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Compostos de Fenilureia , Ratos , Ratos Sprague-Dawley , Proteínas com Domínio T/metabolismo , Tiroxina/análogos & derivados
12.
Development ; 139(1): 95-105, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096071

RESUMO

Delamination of neural progenitors from the apical adherens junction belt of the neuroepithelium is a hallmark of cerebral cortex development and evolution. Specific cell biological processes preceding this delamination are largely unknown. Here, we identify a novel, pre-delamination state of neuroepithelial cells in mouse embryonic neocortex. Specifically, in a subpopulation of neuroepithelial cells that, like all others, exhibit apical-basal polarity and apical adherens junctions, the re-establishing of the primary cilium after mitosis occurs at the basolateral rather than the apical plasma membrane. Neuroepithelial cells carrying basolateral primary cilia appear at the onset of cortical neurogenesis, increase in abundance with its progression, selectively express the basal (intermediate) progenitor marker Tbr2, and eventually delaminate from the apical adherens junction belt to become basal progenitors, translocating their nucleus from the ventricular to the subventricular zone. Overexpression of insulinoma-associated 1, a transcription factor known to promote the generation of basal progenitors, increases the proportion of basolateral cilia. Basolateral cilia in cells delaminating from the apical adherens junction belt are preferentially found near spot-like adherens junctions, suggesting that the latter provide positional cues to basolateral ciliogenesis. We conclude that re-establishing a basolateral primary cilium constitutes the first known cell biological feature preceding neural progenitor delamination.


Assuntos
Cílios/fisiologia , Neocórtex/embriologia , Células Neuroepiteliais/fisiologia , Células-Tronco/fisiologia , Junções Aderentes , Animais , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Neocórtex/ultraestrutura , Proteínas Repressoras , Células-Tronco/citologia , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
13.
Nature ; 457(7227): 322-6, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18971929

RESUMO

The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity to the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialized filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly (Drosophila melanogaster) orthologues of the major constituents of the slit diaphragm, including nephrin, NEPH1 (also known as KIRREL), CD2AP, ZO-1 (TJP1) and podocin, are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find that the nephrocyte diaphragm is completely lost in flies lacking the orthologues of nephrin or NEPH1-a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in human congenital nephrotic syndrome of the Finnish type, NPHS1) or NEPH1. These changes markedly impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting that the two cell types are evolutionarily related, and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Podócitos/citologia , Podócitos/fisiologia , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Podócitos/metabolismo
14.
Exp Cell Res ; 319(6): 810-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318676

RESUMO

Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1-positive structures appeared in three sizes (small, ≤40 nm; intermediates ~40-80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1-containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Melanoma/metabolismo , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Via de Sinalização Wnt , beta Catenina/metabolismo , Antígeno AC133 , Antígenos CD/genética , Compostos Azo/metabolismo , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Movimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicoproteínas/genética , Complexo de Golgi/metabolismo , Humanos , Imuno-Histoquímica , Lipídeos/análise , Melanoma/patologia , Invasividade Neoplásica/patologia , Peptídeos/genética , Regiões Promotoras Genéticas , Análise Espectral Raman , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica , Transfecção , beta Catenina/genética
15.
Front Cell Dev Biol ; 12: 1344734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500687

RESUMO

The development of the neocortex involves an interplay between neural cells and the vasculature. However, little is known about this interplay at the ultrastructural level. To gain a 3D insight into the ultrastructure of the developing neocortex, we have analyzed the embryonic mouse neocortex by serial block-face scanning electron microscopy (SBF-SEM). In this study, we report a first set of findings that focus on the interaction of blood vessels, notably endothelial tip cells (ETCs), and the neural cells in this tissue. A key observation was that the processes of ETCs, located either in the ventricular zone (VZ) or subventricular zone (SVZ)/intermediate zone (IZ), can enter, traverse the cytoplasm, and even exit via deep plasma membrane invaginations of the host cells, including apical progenitors (APs), basal progenitors (BPs), and newborn neurons. More than half of the ETC processes were found to enter the neural cells. Striking examples of this ETC process "invasion" were (i) protrusions of apical progenitors or newborn basal progenitors into the ventricular lumen that contained an ETC process inside and (ii) ETC process-containing protrusions of neurons that penetrated other neurons. Our observations reveal a - so far unknown - complexity of the ETC-neural cell interaction.

16.
Macromol Biosci ; 24(3): e2300464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37925629

RESUMO

Towards the goal of building synthetic cells from the bottom-up, the establishment of micrometer-sized compartments that contain and support cell free transcription and translation that couple cellular structure to function is of critical importance. Proteinosomes, formed from crosslinked cationized protein-polymer conjugates offer a promising solution to membrane-bound compartmentalization with an open, semi-permeable membrane. Critically, to date, there has been no demonstration of cell free transcription and translation within water-in-water proteinosomes. Herein, a novel approach to generate proteinosomes that can support cell free transcription and translation is presented. This approach generates proteinosomes directly from native protein-polymer (BSA-PNIPAAm) conjugates. These native proteinosomes offer an excellent alternative as a synthetic cell chassis to other membrane bound compartments. Significantly, the native proteinosomes are stable under high salt conditions that enables the ability to support cell free transcription and translation and offer enhanced protein expression compared to proteinosomes prepared from traditional methodologies. Furthermore, the integration of native proteinosomes into higher order synthetic cellular architectures with membrane free compartments such as liposomes is demonstrated. The integration of bioinspired architectural elements with the central dogma is an essential building block for realizing minimal synthetic cells and is key for exploiting artificial cells in real-world applications.


Assuntos
Células Artificiais , Proteínas , Resinas Acrílicas/química , Células Artificiais/química , Células Artificiais/metabolismo , Água
17.
Proc Natl Acad Sci U S A ; 107(38): 16595-600, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823249

RESUMO

Mutations in ASPM (abnormal spindle-like microcephaly associated) cause primary microcephaly in humans, a disorder characterized by a major reduction in brain size in the apparent absence of nonneurological anomalies. The function of the Aspm protein in neural progenitor cell expansion, as well as its localization to the mitotic spindle and midbody, suggest that it regulates brain development by a cell division-related mechanism. Furthermore, evidence that positive selection affected ASPM during primate evolution has led to suggestions that such a function changed during primate evolution. Here, we report that in Aspm mutant mice, truncated Aspm proteins similar to those causing microcephaly in humans fail to localize to the midbody during M-phase and cause mild microcephaly. A human ASPM transgene rescues this phenotype but, interestingly, does not cause a gain of function. Strikingly, truncated Aspm proteins also cause a massive loss of germ cells, resulting in a severe reduction in testis and ovary size accompanied by reduced fertility. These germline effects, too, are fully rescued by the human ASPM transgene, indicating that ASPM is functionally similar in mice and humans. Our findings broaden the spectrum of phenotypic effects of ASPM mutations and raise the possibility that positive selection of ASPM during primate evolution reflects its function in the germline.


Assuntos
Microcefalia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Encéfalo/anormalidades , Proteínas de Ligação a Calmodulina , Primers do DNA/genética , Modelos Animais de Doenças , Células-Tronco Embrionárias/patologia , Feminino , Mutação em Linhagem Germinativa , Humanos , Infertilidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Microcefalia/patologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Oligospermia/genética , Ovário/anormalidades , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Motilidade dos Espermatozoides/genética , Testículo/anormalidades
18.
Dev Cell ; 58(2): 139-154.e8, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693320

RESUMO

WNT signaling is important in development, stem cell maintenance, and disease. WNT ligands typically signal via receptor activation across the plasma membrane to induce ß-catenin-dependent gene activation. Here, we show that in mammalian primary cilia, WNT receptors relay a WNT/GSK3 signal that ß-catenin-independently promotes ciliogenesis. Characterization of a LRP6 ciliary targeting sequence and monitoring of acute WNT co-receptor activation (phospho-LRP6) support this conclusion. Ciliary WNT signaling inhibits protein phosphatase 1 (PP1) activity, a negative regulator of ciliogenesis, by preventing GSK3-mediated phosphorylation of the PP1 regulatory inhibitor subunit PPP1R2. Concordantly, deficiency of WNT/GSK3 signaling by depletion of cyclin Y and cyclin-Y-like protein 1 induces primary cilia defects in mouse embryonic neuronal precursors, kidney proximal tubules, and adult mice preadipocytes.


Assuntos
Proteínas Wnt , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Proteínas Wnt/metabolismo , Cílios/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Via de Sinalização Wnt , Fosforilação , Ciclinas/metabolismo , Mamíferos/metabolismo
19.
J Cell Biol ; 176(4): 483-95, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17283184

RESUMO

Expansion of the neocortex requires symmetric divisions of neuroepithelial cells, the primary progenitor cells of the developing mammalian central nervous system. Symmetrically dividing neuroepithelial cells are known to form a midbody at their apical (rather than lateral) surface. We show that apical midbodies of neuroepithelial cells concentrate prominin-1 (CD133), a somatic stem cell marker and defining constituent of a specific plasma membrane microdomain. Moreover, these apical midbodies are released, as a whole or in part, into the extracellular space, yielding the prominin-1-enriched membrane particles found in the neural tube fluid. The primary cilium of neuroepithelial cells also concentrates prominin-1 and appears to be a second source of the prominin-1-bearing extracellular membrane particles. Our data reveal novel origins of extracellular membrane traffic that enable neural stem and progenitor cells to avoid the asymmetric inheritance of the midbody observed for other cells and, by releasing a stem cell membrane microdomain, to potentially influence the balance of their proliferation versus differentiation.


Assuntos
Antígenos CD/metabolismo , Membrana Celular/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Células-Tronco/metabolismo , Antígeno AC133 , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Membrana Celular/ultraestrutura , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Cílios/ultraestrutura , Citocinese/fisiologia , Células Epiteliais/ultraestrutura , Espaço Extracelular/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/ultraestrutura , Transporte Proteico/fisiologia , Células-Tronco/ultraestrutura
20.
Proc Natl Acad Sci U S A ; 106(38): 16487-92, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805325

RESUMO

Interkinetic nuclear migration (INM) is a hallmark of the polarized stem and progenitor cells in the ventricular zone (VZ) of the developing vertebrate CNS. INM is responsible for the pseudostratification of the VZ, a crucial aspect of brain evolution. The nuclear migration toward the apical centrosomes in G2 is thought to be a dynein-microtubule-based process. By contrast, the cytoskeletal machinery involved in the basally directed nuclear translocation away from the centrosome in G1 has been enigmatic. Studying the latter aspect of INM requires manipulation of the cytoskeleton without impairing mitosis and cytokinesis. To this end, we have established a culture system of mouse embryonic telencephalon that reproduces cortical development, and have applied it to explore a role of actomyosin in INM. Using the nonmuscle myosin II inhibitor blebbistatin at a low concentration at which neither cell cycle progression nor cytokinesis is impaired, we show that myosin II is required for the apical-to-basal (ap-->bl), ab-centrosomal INM. Myosin II activity is also necessary for the nuclear translocation during delamination of subventricular zone (SVZ) cells, a second, telencephalon-specific type of neural progenitor. Moreover, the inhibition of ab-centrosomal INM changes the balance between VZ and SVZ progenitor cell fate. Our data suggest a unifying concept in which the actomyosin contraction underlying ab-centrosomal INM sets the stage for the evolutionary increase in VZ pseudostratification and for SVZ progenitor delamination, a key process in cortical expansion.


Assuntos
Núcleo Celular/fisiologia , Miosina Tipo II/metabolismo , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Bromodesoxiuridina/metabolismo , Técnicas de Cultura de Células , Ciclo Celular , Núcleo Celular/ultraestrutura , Proliferação de Células , Células Cultivadas , Centrossomo/metabolismo , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Miosina Tipo II/antagonistas & inibidores , Neurônios/citologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA