Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 155(3): 594-605, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243017

RESUMO

Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.


Assuntos
Transporte Ativo do Núcleo Celular , HIV-1/química , RNA Mensageiro/química , RNA Viral/química , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química , Sequência de Bases , Sítios de Ligação , Núcleo Celular/metabolismo , Células HEK293 , HIV-1/genética , Humanos , Dados de Sequência Molecular , Poro Nuclear/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo
2.
Small ; 18(19): e2106017, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35142037

RESUMO

Nanostructured materials with high surface area and low coordinated atoms present distinct intrinsic properties from their bulk counterparts. However, nanomaterials' nucleation/growth mechanism during the synthesis process and the changes of the nanomaterials in the working state are still not thoroughly studied. As two indispensable methods, X-ray absorption spectroscopy (XAS) provides nanomaterials' electronic structure and coordination environment, while small-angle X-ray scattering (SAXS) offers structural properties and morphology information. A combination of in situ/operando XAS and SAXS provides high temporal and spatial resolution to monitor the evolution of nanomaterials. This review gives a brief introduction to in situ/operando SAXS/XAS cells. In addition, the application of in situ/operando XAS and SAXS in preparing nanomaterials and studying changes of working nanomaterials are summarized.


Assuntos
Nanoestruturas , Espalhamento a Baixo Ângulo , Espectroscopia por Absorção de Raios X , Difração de Raios X
3.
Phys Chem Chem Phys ; 21(22): 11740-11747, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114817

RESUMO

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of supports were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and the electronic states of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2, γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. In situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and the electronic states of catalysts are strongly influenced by support materials.

4.
Inorg Chem ; 55(5): 2413-20, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878202

RESUMO

Catalyst support materials of tetragonal ZrO2, stabilized by either La2O3 (La2O3-ZrO2) or CeO2 (CeO2-ZrO2), were synthesized under hydrothermal conditions at 200 °C with NH4OH or tetramethylammonium hydroxide as the mineralizer. From in situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La2O3-ZrO2 and CeO2-ZrO2 supports were nonporous nanocrystallites that exhibited rectangular shapes with a thermal stability of up to 1000 °C in air. These supports had an average size of ∼ 10 nm and a surface area of 59-97 m(2)/g. The catalysts Pt/La2O3-ZrO2 and Pt/CeO2-ZrO2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3 to 12.4 wt %. Monodispersed Pt nanoparticles of ∼ 3 nm were obtained for these catalysts. The incorporation of La2O3 and CeO2 into the t-ZrO2 structure did not affect the nature of the active sites for the Pt/ZrO2 catalysts for the water-gas shift reaction.

5.
Phys Chem Chem Phys ; 17(42): 28144-53, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25792336

RESUMO

We report the structural evolution of Pd-Zn alloys in a 3.6% Pd-12% Zn/Al2O3 catalyst which is selective for propane dehydrogenation. High signal-to-noise, in situ synchrotron X-ray diffraction (XRD) was used quantitatively, in addition to in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) and extended X-ray absorption fine structure (EXAFS) to follow the structural changes in the catalyst as a function of reduction temperature. XRD in conjunction with DRIFTS of adsorbed CO indicated that the ß1-PdZn intermetallic alloy structure formed at reduction temperatures as low as 230 °C, likely first at the surface, but did not form extensively throughout the bulk until 500 °C which was supported by in situ EXAFS. DRIFTS results suggested there was little change in the surfaces of the nanoparticles above 325 °C. The intermetallic alloy which formed was Pd-rich at all temperatures but became less Pd-rich with increasing reduction temperature as more Zn incorporated into the structure. In addition to the ß1-PdZn alloy, a solid solution phase with face-center cubic structure (α-PdZn) was present in the catalyst, also becoming more Zn-rich with increasing reduction temperature.

6.
J Am Chem Soc ; 136(26): 9320-6, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24919812

RESUMO

We investigated changes in the Pt-Pt bond distance, particle size, crystallinity, and coordination of Pt nanoparticles as a function of particle size (1-3 nm) and adsorbate (H2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The ∼1 nm Pt nanoparticles showed a Pt-Pt bond distance contraction of ∼1.4%. The adsorption of H2 and CO at room temperature relaxed the Pt-Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H2 improved the crystallinity of the small Pt nanoparticles. However, CO adsorption generated a more disordered fcc structure for the 1-3 nm Pt nanoparticles compared to the H2 adsorption Pt nanoparticles. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system.

7.
Chemistry ; 20(31): 9589-95, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25042979

RESUMO

An inorganic-organic hybrid surfactant with a hexavanadate cluster as the polar head group was designed and observed to assemble into micelle structures, which further spontaneously coagulate into a 1D anisotropic structure in aqueous solutions. Such a hierarchical self-assembly process is driven by the cooperation of varied noncovalent interactions, including hydrophobic, electrostatic, and hydrogen-bonding interactions. The hydrophobic interaction drives the quick formation of the micelle structure; electrostatic interactions involving counterions leads to the further coagulation of the micelles into larger assemblies. This process is similar to the crystallization process, but the specific counterions and the directional hydrogen bonding lead to the 1D growth of the final assemblies. Since most of the hexavanadates are exposed to the surface, the 1D assembly with nanoscale thickness is a highly efficient heterogeneous catalyst for the oxidation of organic sulfides with appreciable recyclability.


Assuntos
Compostos de Tungstênio/química , Anisotropia , Catálise , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular
8.
J Phys Chem A ; 118(37): 8477-84, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24922443

RESUMO

Size-selected subnanometer cobalt clusters with 4, 7, and 27 cobalt atoms supported on amorphous alumina and ultrananocrystalline diamond (UNCD) surfaces were oxidized after exposure to ambient air. Grazing incidence X-ray absorption near-edge spectroscopy (GIXANES) and near-edge X-ray absorption fine structure (NEXAFS) were used to characterize the clusters revealed a strong dependency of the oxidation state and structure of the clusters on the surface. A dominant Co(2+) phase was identified in all samples. However, XANES analysis of cobalt clusters on UNCD showed that ∼10% fraction of a Co(0) phase was identified for all three cluster sizes and about 30 and 12% fraction of a Co(3+) phase in 4, 7, and 27 atom clusters, respectively. In the alumina-supported clusters, the dominating Co(2+) component was attributed to a cobalt aluminate, indicative of a very strong binding to the support. NEXAFS showed that in addition to strong binding of the clusters to alumina, their structure to a great extent follows the tetrahedral morphology of the support. All supported clusters were found to be resistant to agglomeration when exposed to reactive gases at elevated temperatures and atmospheric pressure.

9.
ACS Nano ; 18(9): 7037-7045, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373167

RESUMO

The solvation structure of water-in-salt electrolytes was thoroughly studied, and two competing structures─anion solvated structure and anion network─were well-defined in recent publications. To further reveal the solvation structure in those highly concentrated electrolytes, particularly the influence of solvent, methanol was chosen as the solvent for this proposed study. In this work, small-angle X-ray scattering, small-angle neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy were utilized to obtain the global and local structural information. With the concentration increment, the anion network formed by TFSI- became the dominant structure. Meanwhile, the hydrogen bonds among methanol were interrupted by the TFSI- anion and formed a new connection with them. Molecular dynamic simulations with two different force fields (GAFF and OPLS-AA) are tested, and GAFF agreed with synchrotron small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) results well and provided insightful information about molecular/ion scale solvation structure. This article not only deepens the understanding of the solvation structure in highly concentrated solutions, but more importantly, it provides additional strong evidence for utilizing SAXS/WAXS to validate molecular dynamics simulations.

10.
Langmuir ; 29(41): 12777-84, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24044529

RESUMO

Rodlike tobacco mosaic virus (TMV) has been found to assemble into superlattices in aqueous solution using the polymer methylcellulose to induce depletion and free volume entropy-based attractive forces. Both transmission electron microscopy and small-angle X-ray scattering show that the superlattices form in both semidilute and concentrated regimes of polymer, where the free volume entropy and the depletion interaction are the dominant driving force, respectively. The superlattices are NaCl and temperature responsive. The rigidity of the rodlike nanoparticles also plays an important role for the formation of superlattices through the free volume entropy mechanism. Compared to the rigid TMV particle, flexible bacteriophage M13 particles are only responsive to the depletion force and thus only assemble in highly concentrated polymer solution, where depletion interaction is dominant.


Assuntos
Metilcelulose/química , Polímeros/química , Vírus do Mosaico do Tabaco/química , Entropia , Nanopartículas/química , Tamanho da Partícula , Cloreto de Sódio/química , Soluções , Propriedades de Superfície , Temperatura , Vírus do Mosaico do Tabaco/ultraestrutura , Água/química
11.
Langmuir ; 28(49): 17159-67, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23151155

RESUMO

The composite of multiwalled carbon nanotubes (MWCNTs) decorated with ZrO(2) nanoparticles, synthesized by a grafting method followed by high-temperature annealing, was studied. The oxygen functionalized MWCNT surface uniformly disperses and stabilizes the oxide nanoparticles to an extent that is controlled by the metal oxide loading and thermal annealing temperature. This ZrO(2)/MWCNT also withstands decomposition in a hydrothermal environment providing potential applications in the catalysis of biomass conversion (e.g., aqueous phase reforming). The ZrO(2)/MWCNT have been characterized by (scanning) transmission electron microscopy ((S)TEM), X-ray diffraction (XRD), in situ small-angle X-ray scattering (SAXS), in situ wide-angle X-ray scattering (WAXS), and near edge X-ray fine structure (NEXAFS) for the purpose of a comprehensive analysis of the ZrO(2) particle size and particle size stability.

12.
Phys Chem Chem Phys ; 14(26): 9336-42, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419008

RESUMO

The catalytic activity of oxide-supported metal nanoclusters strongly depends on their size and support. In this study, the origin of morphology transformation and chemical state changes during the oxidative dehydrogenation of cyclohexene was investigated in terms of metal-support interactions. Model catalyst systems were prepared by deposition of size selected subnanometer Co(27±4) clusters on various metal oxide supports (Al(2)O(3), ZnO and TiO(2) and MgO). The oxidation state and reactivity of the supported cobalt clusters were investigated by temperature programmed reaction (TPRx) and in situ grazing incidence X-ray absorption (GIXAS) during oxidative dehydrogenation of cyclohexene, while the sintering resistance monitored with grazing incidence small angle X-ray scattering (GISAXS). The activity and selectivity of cobalt clusters shows strong dependence on the support. GIXAS reveals that metal-support interaction plays a key role in the reaction. The most pronounced support effect is observed for MgO, where during the course of the reaction in its activity, composition and size dynamically evolving nanoassembly is formed from subnanometer cobalt clusters.

13.
J Chem Phys ; 136(7): 074105, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22360234

RESUMO

An efficient implementation of simultaneous reverse Monte Carlo (RMC) modeling of pair distribution function (PDF) and EXAFS spectra is reported. This implementation is an extension of the technique established by Krayzman et al. [J. Appl. Cryst. 42, 867 (2009)] in the sense that it enables simultaneous real-space fitting of x-ray PDF with accurate treatment of Q-dependence of the scattering cross-sections and EXAFS with multiple photoelectron scattering included. The extension also allows for atom swaps during EXAFS fits thereby enabling modeling the effects of chemical disorder, such as migrating atoms and vacancies. Significant acceleration of EXAFS computation is achieved via discretization of effective path lengths and subsequent reduction of operation counts. The validity and accuracy of the approach is illustrated on small atomic clusters and on 5500-9000 atom models of bcc-Fe and α-Fe(2)O(3). The accuracy gains of combined simultaneous EXAFS and PDF fits are pointed out against PDF-only and EXAFS-only RMC fits. Our modeling approach may be widely used in PDF and EXAFS based investigations of disordered materials.

14.
Langmuir ; 27(17): 10929-37, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21786809

RESUMO

Rodlike tobacco mosaic virus (TMV) has been found to assemble into a 2D superlattice in aqueous solution with hexagonally packed structures in the presence of Ba(2+) through like-charge attraction whereas lower-Z divalent ions such as Zn(2+), Cd(2+), Mg(2+), and Ca(2+) induce only liquidlike ordering. The molar ratio between Ba(2+) and TMV is a crucial parameter in the formation of the superlattice. There is a critical molar ratio of Ba(2+) to TMV at which TMV exhibits a transition from a nonordered colloidal state to an ordered crystalline state. It is also found that the superlattice is formed regardless of the pH and TMV concentration within the range studied.


Assuntos
Bário/química , Vírus do Mosaico do Tabaco/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Tamanho da Partícula , Soluções , Eletricidade Estática , Propriedades de Superfície , Água/química
15.
Small Methods ; 5(5): e2001194, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34928104

RESUMO

Single-atom and subnanocluster catalysts (SSCs) represent a highly promising class of low-cost materials with high catalytic activity and high atom-utilization efficiency. However, SSCs are susceptible to undergo restructuring during the reactions. Exploring the active sites of catalysts through in situ characterization techniques plays a critical role in studying reaction mechanism and guiding the design of optimum catalysts. In situ X-ray absorption spectroscopy/small-angle X-ray scattering (XAS/SAXS) is promising and widely used for monitoring electronic structure, atomic configuration, and size changes of SSCs during real-time working conditions. Unfortunately, there is no detailed summary of XAS/SAXS characterization results of SSCs. The recent advances in applying in situ XAS/SAXS to SSCs are thoroughly summarized in this review, including the atomic structure and oxidation state variations under open circuit and realistic reaction conditions. Furthermore, the reversible transformation of single-atom catalysts (SACs) to subnanoclusters/nanoparticles and the application of in situ XAS/SAXS in subnanoclusters are discussed. Finally, the outlooks in modulating the SSCs and developing operando XAS/SAXS for SSCs are highlighted.

16.
Phys Chem Chem Phys ; 12(21): 5585-95, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20424733

RESUMO

The preparation, characterization and catalytic reactivity of a GaN supported Pt catalyst in the hydrogenation of ethene are presented in this feature article, highlighting the use of in situ characterization of the material properties during sample handling and catalysis by combining temperature programmed reaction with in situ grazing incidence small-angle X-ray scattering and X-ray absorption spectroscopy. The catalysts are found to be sintering resistant at elevated temperatures as well as during reduction and hydrogenation reactions. In contrast to Pt particles of approximately 7 nm diameter, smaller particles of 1.8 nm in size are found to dynamically adapt their shape and oxidation state to the changes in the reaction environment. These smaller Pt particles also showed an initial deactivation in ethene hydrogenation, which is paralleled by the change in the particle shape. The subtle temperature-dependent X-ray absorbance of the 1.8 nm sized Pt particles indicates that subtle variations in the electronic structure induced by the state of reduction by electron tunnelling over the Schottky barrier between the Pt particles and the GaN support can be monitored.

17.
Nano Lett ; 9(12): 4138-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19780585

RESUMO

Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia/métodos , Óxidos/química , Soluções/química , Temperatura Baixa , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
J Phys Chem Lett ; 11(4): 1276-1281, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31951143

RESUMO

"Water-in-salt" electrolytes open up exciting new avenues for expanding the electrochemical window of aqueous electrolytes. We investigated the solvation structure and dynamics of highly concentrated lithium bis(trifluoromethane)sulfonimide aqueous electrolyte using experimentally corroborated molecular dynamics simulations. The simulations revealed that the heterogeneous structure of the electrolyte comprises percolating networks of ion and water domains/aggregates. Interestingly, the ionic regions are composed of more TFSI- ions than Li+ ions. The Li+-ion transport mechanism was further explored. Li+ ions can hop along the coordinated TFSI- ions in the ionic aggregates. The calculated correlated transference number of the 20 m electrolyte is ∼0.32, which is reasonably high for the high concentration due to a weak negative correlation between the motion of cations and anions within the heterogeneous microscopic domains. These molecular dynamics results connect the heterogeneous structure of the electrolyte to the correlated dynamics of the Li+ ion and provide a new understanding of the Li+-ion transport mechanism in this novel electrolyte.

19.
J Chem Phys ; 131(12): 121104, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791845

RESUMO

The catalytic activity and dynamical shape changes in size-selected nanoclusters at work are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed reaction with in situ grazing-incidence small angle x-ray scattering. This approach allows drawing a direct correlation between nanocatalyst size, composition, shape, and its function under realistic reaction conditions for the first time. The approach is illustrated in a chemical industry highly relevant selective partial oxidation of propene on a monodisperse silver nanocatalyst. The shape of the catalyst undergoes rapid change already at room temperature upon the exposure to the reactants, followed by a complex evolution of shape with increasing temperature. Acrolein formation is observed around 50 degrees C while the formation of the propylene oxide exhibits a sharp onset at 80 degrees C and is leveling off at 150 degrees C. At lower temperatures acrolein is produced preferentially to propylene oxide; at temperatures above 100 degrees C propylene oxide is favored.

20.
Angew Chem Int Ed Engl ; 48(8): 1467-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19152388

RESUMO

Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations are used to identify key reaction intermediates and reaction pathways. The results confirm the high catalyst activity owing to the formation of propene oxide metallacycles. Al green, Au yellow, O red, and C gray.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA