Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38400338

RESUMO

In order to achieve the Sustainable Development Goals (SDG), it is imperative to ensure the safety of drinking water. The characteristics of each drinkable water, encompassing taste, aroma, and appearance, are unique. Inadequate water infrastructure and treatment can affect these features and may also threaten public health. This study utilizes the Internet of Things (IoT) in developing a monitoring system, particularly for water quality, to reduce the risk of contracting diseases. Water quality components data, such as water temperature, alkalinity or acidity, and contaminants, were obtained through a series of linked sensors. An Arduino microcontroller board acquired all the data and the Narrow Band-IoT (NB-IoT) transmitted them to the web server. Due to limited human resources to observe the water quality physically, the monitoring was complemented by real-time notifications alerts via a telephone text messaging application. The water quality data were monitored using Grafana in web mode, and the binary classifiers of machine learning techniques were applied to predict whether the water was drinkable or not based on the data collected, which were stored in a database. The non-decision tree, as well as the decision tree, were evaluated based on the improvements of the artificial intelligence framework. With a ratio of 60% for data training: at 20% for data validation, and 10% for data testing, the performance of the decision tree (DT) model was more prominent in comparison with the Gradient Boosting (GB), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) modeling approaches. Through the monitoring and prediction of results, the authorities can sample the water sources every two weeks.


Assuntos
Água Potável , Internet das Coisas , Humanos , Inteligência Artificial , Computação em Nuvem , Confiabilidade dos Dados
2.
Front Public Health ; 10: 1022055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703846

RESUMO

The coronavirus disease (COVID-19) outbreak has turned the world upside down bringing about a massive impact on society due to enforced measures such as the curtailment of personal travel and limitations on economic activities. The global pandemic resulted in numerous people spending their time at home, working, and learning from home hence exposing them to air contaminants of outdoor and indoor origins. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which spreads by airborne transmission. The viruses found indoors are linked to the building's ventilation system quality. The ventilation flow in an indoor environment controls the movement and advection of any aerosols, pollutants, and Carbon Dioxide (CO2) created by indoor sources/occupants; the quantity of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique used to track a person's COVID-19 risk, but high or low CO2 levels do not necessarily mean that the COVID-19 virus is present in the air. CO2 monitors, in short, can help inform an individual whether they are breathing in clean air. In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring systems use various sensors that are available in the marketplace. This work presents a review of scientific articles that influence intelligent monitoring development and indoor environmental quality management system. The paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266 microcontroller support the development of low-cost indoor air monitoring at learning facilities.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Dióxido de Carbono , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Aerossóis e Gotículas Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA