Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nature ; 613(7942): 71-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600065

RESUMO

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

2.
Nano Lett ; 23(22): 10449-10457, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934894

RESUMO

Two-dimensional antiferromagnets have garnered considerable interest for the next generation of functional spintronics. However, many bulk materials from which two-dimensional antiferromagnets are isolated are limited by their air sensitivity, low ordering temperatures, and insulating transport properties. TaFe1+yTe3 aims to address these challenges with increased air stability, metallic transport, and robust antiferromagnetism. Here, we synthesize TaFe1+yTe3 (y = 0.14), identify its structural, magnetic, and electronic properties, and elucidate the relationships between them. Axial-dependent high-field magnetization measurements on TaFe1.14Te3 reveal saturation magnetic fields ranging between 27 and 30 T with saturation magnetic moments of 2.05-2.12 µB. Magnetotransport measurements confirm that TaFe1.14Te3 is metallic with strong coupling between magnetic order and electronic transport. Angle-resolved photoemission spectroscopy measurements across the magnetic transition uncover a complex interplay between itinerant electrons and local magnetic moments that drives the magnetic transition. We demonstrate the ability to isolate few-layer sheets of TaFe1.14Te3, establishing TaFe1.14Te3 as a potential platform for two-dimensional spintronics.

3.
Nat Mater ; 21(7): 754-760, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513502

RESUMO

Semiconductors, featuring tunable electrical transport, and magnets, featuring tunable spin configurations, form the basis of many information technologies. A long-standing challenge has been to realize materials that integrate and connect these two distinct properties. Two-dimensional (2D) materials offer a platform to realize this concept, but known 2D magnetic semiconductors are electrically insulating in their magnetic phase. Here we demonstrate tunable electron transport within the magnetic phase of the 2D semiconductor CrSBr and reveal strong coupling between its magnetic order and charge transport. This provides an opportunity to characterize the layer-dependent magnetic order of CrSBr down to the monolayer via magnetotransport. Exploiting the sensitivity of magnetoresistance to magnetic order, we uncover a second regime characterized by coupling between charge carriers and magnetic defects. The magnetoresistance within this regime can be dynamically and reversibly tuned by varying the carrier concentration using an electrostatic gate, providing a mechanism for controlling charge transport in 2D magnets.


Assuntos
Magnetismo , Semicondutores , Fenômenos Magnéticos , Imãs
4.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37093146

RESUMO

Quasi-2D nanomaterials such as semiconducting nanoplatelets (NPLs) have drawn considerable interest due to their tunable optical properties and large surface to volume ratios. Cadmium selenide (CdSe) NPLs are of particular fundamental interest since their thicknesses can be controlled with atomic precision using well-established solution-phase synthetic techniques. Additionally, their large surface area makes them especially susceptible to changes in the identity of the capping ligands and, therefore, good model systems for understanding surface chemistry. In the current work, we explore the role of these ligands in altering the lattice parameters and optical properties of CdSe NPLs. We build on prior research that has employed varying binding groups, including thiols, phosphonic acids, and halides, to demonstrate ligand-dependent optical bandgap changes and concomitant lattice distortions as determined by powder x-ray diffraction (PXRD). Our work investigates the correlations between ligand-induced optical and structural changes with a series of ligands that maintain a consistent carboxylic acid binding group, thus allowing us to probe secondary ligand effects. We perform ligand exchanges on oleic acid-capped CdSe NPLs with benzoic acids, cinnamic acids, and cyclohexanecarboxylic acid. In all cases, the optical bandgap decreases upon ligand exchange, and a correlated expansion in the thickness of the NPLs is observed via PXRD. We also observe that the benzoic acids produce larger optical and structural distortions than the cinnamic acids. We show that the optical and structural correlation is nearly quantitatively described by quantum confinement effects, with the thicker quantum wells exhibiting smaller energy gaps.

5.
J Am Chem Soc ; 144(12): 5263-5267, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302759

RESUMO

The amplification of chiral absorbance and emission is a primary figure of merit for the design of chiral chromophores. However, for dyes to be practically relevant in chiroptical applications, they must also absorb and/or emit chiral light over broad wavelength ranges. We investigate the interplay between molecular symmetry and broad-band chiral absorbance in a series of [6]helicenes. We find that an asymmetric [6]helicene containing two distinct chromophores absorbs chiral light across a much wider wavelength range than the symmetric [6]helicenes investigated here. Chemically reducing the helicenes shifts the absorption edge of the ECD spectra into the near-infrared wavelength range while preserving broad chiral absorption, producing a [6]helicene that absorbs a single handedness of light across the entire visible wavelength range.


Assuntos
Corantes , Luz , Corantes/química
6.
J Am Chem Soc ; 144(1): 306-313, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937334

RESUMO

We show that reaction pathways from a single superatom motif can be controlled through subtle electronic modification of the outer ligand spheres. Chevrel-type [Co6Se8L6] (L = PR3, CO) superatoms are used to form carbene-terminated clusters, the reactivity of which can be influenced through the electronic effects of the surrounding ligands. This carbene provides new routes for ligand substitution chemistry, which is used to selectively install cyanide or pyridine ligands which were previously inaccessible in these cobalt-based clusters. The surrounding ligands also impact the ability of this carbene to create larger fused clusters of the type [Co12Se16L10], providing underlying information for cluster fusion mechanisms. We use this information to develop methods of creating dimeric clusters with functionalized surface ligands with site specificity, putting new ligands in specific positions on this anisotropic core. Finally, adjusting the carbene intermediates can also be used to perturb the geometry of the [Co6Se8] core itself, as we demonstrate with a multicarbene adduct that displays a substantially anisotropic core. These additional levels of synthetic control could prove instrumental for using superatomic clusters for many applications including catalysis, electronic devices, and creating novel extended structures.

7.
J Am Chem Soc ; 144(1): 74-79, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978439

RESUMO

Coating two-dimensional (2D) materials with molecules bearing tunable properties imparts their surfaces with functionalities for applications in sensing, nanoelectronics, nanofabrication, and electrochemistry. Here, we report a method for the site-selective surface functionalization of 2D superatomic Re6Se8Cl2 monolayers. First, we activate bulk layered Re6Se8Cl2 by intercalating lithium and then exfoliate the intercalation compound Li2Re6Se8Cl2 in N-methylformamide (NMF). Heating the resulting solution eliminates LiCl to produce monolayer Re6Se8(NMF)2-x (x ≈ 0.4) as high-quality nanosheets. The unpaired electrons on each cluster in Re6Se8(NMF)2-x enable covalent surface functionalization through radical-based chemistry. We demonstrate this to produce four previously unknown surface-functionalized 2D superatomic materials: Re6Se8I2, Re6Se8(SPh)2, Re6Se8(SPhNH2)2, and Re6Se8(SC16H33)2. Transmission electron microscopy, chemical analysis, and vibrational spectroscopy reveal that the in-plane structure of the 2D Re6Se8 material is preserved through surface functionalization. We find that the incoming groups control the density of vacancy defects and the solubility of the 2D material. This approach will find utility in installing a broad array of chemical functionalities on the surface of 2D superatomic materials as a means to systematically tune their physical properties, chemical reactivity, and solution processability.

8.
Phys Chem Chem Phys ; 24(18): 11206-11212, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481469

RESUMO

Hydrate formation is often unavoidable during crystallization, leading to performance degradation of pharmaceuticals and energetics. In some cases, water molecules trapped within crystal lattices can be substituted for hydrogen peroxide, improving the solubility of drugs and detonation performance of explosives. The present work compares hydrates and hydrogen peroxide solvates in two ways: (1) analyzing structural motifs present in crystal structures accessed from the Cambridge Structural Database and (2) developing potential energy surfaces for water and hydrogen peroxide interacting with functional groups of interest at geometries relevant to the solid state. By elucidating fundamental differences in local interactions that can be formed with molecules of hydrogen peroxide and/or water, the analyses presented here provide a foundation for the design and selection of candidate molecules for the formation of hydrogen peroxide solvates.


Assuntos
Peróxido de Hidrogênio , Água , Cristalização , Peróxido de Hidrogênio/química , Solubilidade , Água/química
9.
Nano Lett ; 21(8): 3511-3517, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856213

RESUMO

The advent of two-dimensional (2D) magnets offers unprecedented control over electrons and spins. A key factor in determining exchange coupling and magnetic order is symmetry. Here, we apply second harmonic generation (SHG) to probe a 2D magnetic semiconductor CrSBr. We find that monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a large magnetic dipole SHG effect in the centrosymmetric structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, and in contrast to other 2D magnets, the Néel temperature of CrSBr increases with decreasing layer number. We identify magnetic dipole and magnetic toroidal moments as order parameters of the ferromagnetic monolayer and antiferromagnetic bilayer, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and extend the SHG probe of magnetic symmetry to the monolayer limit, opening the door to exploring the applications of magnetic-electronic coupling and the magnetic toroidal moment.

10.
J Am Chem Soc ; 143(1): 109-113, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356207

RESUMO

Layered van der Waals (vdW) materials belonging to the MM'Te4 structure class have recently received intense attention due to their ability to host exotic electronic transport phenomena, such as in-plane transport anisotropy, Weyl nodes, and superconductivity. Here we report two new vdW materials with strongly anisotropic in-plane structures featuring stripes of metallic TaTe2 and semiconducting FeTe2, α-TaFeTe4 and ß-TaFeTe4. We find that the structure of α-TaFeTe4 produces strongly anisotropic in-plane electronic transport (anisotropy ratio of up to 250%), outcompeting all other vdW metals, and demonstrate that it can be mechanically exfoliated to the two-dimensional (2D) limit. We also explore the possibility that broken inversion symmetry in ß-TaFeTe4 produces Weyl points in the electronic band structure. Eight Weyl nodes slightly below the Fermi energy are computationally identified for ß-TaFeTe4, indicating they may contribute to the transport behavior of this polytype. These findings identify the TaFeTe4 polytypes as an ideal platform for investigation of 2D transport anisotropy and chiral charge transport as a result of broken symmetry.

11.
J Am Chem Soc ; 143(2): 983-991, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33377771

RESUMO

Here we report the synthesis of two polyhelicene frameworks consisting, from end-to-end, of 18 and 24 fused benzene rings. The latter exhibits the largest electronic circular dichroism in the visible spectrum of any molecule. These shape-persistent helical nanoribbons incorporate multiple helicenes, a class of contorted polycyclic aromatic molecules consisting of ortho-annulated rings. These conjugated, chiral molecules have interesting chemical, biological, and chiroptical properties; however, there are very few helicenes with extraordinary chiroptical response over a broad range of the visible spectrum-a key criterion for applications such as chiral optoelectronics. In this report, we show that coupling the polyhelicene framework with multiple perylene-diimide subunits elicits a significant chiroptic response. Notably, the molar circular dichroism increases faster than the absorptivity of these molecules as their helical axis lengthens. Computational analysis reveals that the greatly amplified circular dichroism arises from exciton-like interactions between the perylene-diimide and the helicene moieties. We predict that even greater chiroptic enhancement will result from further axial elongation of these nanoribbons, which can be readily enabled via the iterative synthetic method presented herein.


Assuntos
Nanoestruturas/química , Compostos Policíclicos/química , Teoria da Densidade Funcional , Estrutura Molecular , Compostos Policíclicos/síntese química , Estereoisomerismo
12.
J Am Chem Soc ; 141(46): 18551-18559, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31692339

RESUMO

Selective access to a targeted isomer is often critical in the synthesis of biologically active molecules. Whereas small-molecule reagents and catalysts often act with anticipated site- and stereoselectivity, this predictability does not extend to enzymes. Further, the lack of access to catalysts that provide complementary selectivity creates a challenge in the application of biocatalysis in synthesis. Here, we report an approach for accessing biocatalysts with complementary selectivity that is orthogonal to protein engineering. Through the use of a sequence similarity network (SSN), a number of sequences were selected, and the corresponding biocatalysts were evaluated for reactivity and selectivity. With a number of biocatalysts identified that operate with complementary site- and stereoselectivity, these catalysts were employed in the stereodivergent, chemoenzymatic synthesis of azaphilone natural products. Specifically, the first syntheses of trichoflectin, deflectin-1a, and lunatoic acid A were achieved. In addition, chemoenzymatic syntheses of these azaphilones supplied enantioenriched material for reassignment of the absolute configuration of trichoflectin and deflectin-1a based on optical rotation, CD spectra, and X-ray crystallography.


Assuntos
Benzopiranos/síntese química , Produtos Biológicos/síntese química , Pigmentos Biológicos/síntese química , Benzopiranos/química , Biocatálise , Produtos Biológicos/química , Pigmentos Biológicos/química , Estereoisomerismo
13.
Angew Chem Int Ed Engl ; 57(29): 9044-9047, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29786921

RESUMO

Ferroelectric materials exhibit switchable remanent polarization due to reversible symmetry breaking under an applied electric field. Previous research has leveraged temperature-induced neutral-ionic transitions in charge-transfer (CT) cocrystals to access ferroelectrics that operate through displacement of molecules under an applied field. However, displacive ferroelectric behavior is rare in organic CT cocrystals and achieving a Curie temperature (TC ) above ambient has been elusive. Here a cocrystal between acenaphthene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane is presented that shows switchable remanent polarization at room temperature (TC =68 °C). Raman spectroscopy, X-ray diffraction, and solid-state NMR spectroscopy indicate the ferroelectric behavior is facilitated by acenaphthene (AN) rotation, deviating from conventional design strategies for CT ferroelectrics. These findings highlight the relevance of non-CT interactions in the design of displacive ferroelectric cocrystals.

14.
Adv Mater ; 34(27): e2201000, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35504841

RESUMO

2D materials can host long-range magnetic order in the presence of underlying magnetic anisotropy. The ability to realize the full potential of 2D magnets necessitates systematic investigation of the role of individual atomic layers and nanoscale inhomogeneity (i.e., strain) on the emergence of stable magnetic phases. Here, spatially dependent magnetism in few-layer CrSBr is revealed using magnetic force microscopy (MFM) and Monte Carlo-based simulations. Nanoscale visualization of the magnetic sheet susceptibility is extracted from MFM data and force-distance curves, revealing a characteristic onset of both intra- and interlayer magnetic correlations as a function of temperature and layer-thickness. These results demonstrate that the presence of a single uncompensated layer in odd-layer terraces significantly reduces the stability of the low-temperature antiferromagnetic (AFM) phase and gives rise to multiple coexisting magnetic ground states at temperatures close to the bulk Néel temperature (TN ). Furthermore, the AFM phase can be reliably suppressed using modest fields (≈16 mT) from the MFM probe, behaving as a nanoscale magnetic switch. This prototypical study of few-layer CrSBr demonstrates the critical role of layer parity on field-tunable 2D magnetism and validates MFM for use in nanomagnetometry of 2D materials (despite the ubiquitous absence of bulk zero-field magnetism in magnetized sheets).

15.
Chem Commun (Camb) ; 56(14): 2111-2114, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31967626

RESUMO

Cyanuric triazide (CTA) and benzotrifuroxan (BTF) form a metal-free primary energetic cocrystal with suppressed volatility and improved thermal properties relative to CTA. Though electrostatic potential maps of the most stable conformations do not predict favorable interactions, a higher energy conformer has appropriate electrostatics and is selected by BTF in the cocrystal.

16.
Org Lett ; 20(16): 4954-4958, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30052456

RESUMO

The development of a Lewis acid-catalyzed ring-opening cross-metathesis reaction which enables selective access to acyclic, unsaturated ketones as the carbonyl-olefin metathesis products is described. While catalytic amounts of FeCl3 were previously identified as optimal to catalyze ring-closing metathesis reactions, the complementary ring-opening metathesis between cyclic alkenes and carbonyl functionalities relies on GaCl3 as the superior Lewis acid catalyst.


Assuntos
Alcenos/química , Gálio/química , Catálise , Cicloparafinas/química , Cetonas/química , Ácidos de Lewis/química , Estereoisomerismo
17.
Science ; 361(6409): 1363-1369, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30262500

RESUMO

Some of the simplest and most powerful carbon-carbon bond forming strategies take advantage of readily accessible ubiquitous motifs: carbonyls and olefins. Here we report a fundamentally distinct mode of reactivity between carbonyls and olefins that differs from established acid-catalyzed carbonyl-ene, Prins, and carbonyl-olefin metathesis reaction paths. A range of epsilon, zeta-unsaturated ketones undergo Brønsted acid-catalyzed intramolecular cyclization to provide tetrahydrofluorene products via the formation of two new carbon-carbon bonds. Theoretical calculations and accompanying mechanistic studies suggest that this carbocyclization reaction proceeds through the intermediacy of a transient oxetane formed by oxygen atom transfer. The complex polycyclic frameworks in this product class appear as common substructures in organic materials, bioactive natural products, and recently developed pharmaceuticals.

18.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 8): 950-5, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26396764

RESUMO

In the crystal structure of 2,3-di-methyl-maleic anhydride, C6H6O3, the closest non-bonding inter-molecular distances, between the carbonyl C and O atoms of neighboring mol-ecules, were measured as 2.9054 (11) and 3.0509 (11) Å, which are well below the sum of the van der Waals radii for these atoms. These close contacts, as well as packing motifs similar to that of the title compound, were also found in the crystal structure of maleic anhydride itself and other 2,3-disubstituted maleic anhydrides. Computational modeling suggests that this close contact is caused by strong electrostatic inter-actions between the carbonyl C and O atoms.

19.
Chem Commun (Camb) ; 51(58): 11642-5, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26099041

RESUMO

1,3,5-Tris(4-carboxyphenyl)benzene assembles into an intricate 8-fold polycatenated assembly of (6,3) hexagonal nets formed through hydrogen bonds and π-stacking. One polymorph features 56 independent molecules in the asymmetric unit, the largest Z' reported to date. The framework is permanently porous, with a BET surface area of 1095 m(2) g(-1) and readily adsorbs N2, H2 and CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA