Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Breast Cancer Res ; 23(1): 97, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641959

RESUMO

BACKGROUND: Mechanical interactions between tumor cells and microenvironments are frequent phenomena during breast cancer progression, however, it is not well understood how these interactions affect Epithelial-to-Mesenchymal Transition (EMT). EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells. METHODS: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in expression were quantified using microarrays, qPCR, immunocytochemistry, and western blots. Gene-gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Potential involvement of Smads was investigated using siRNA knockdown studies. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer, migrate and invade membrane pores was evaluated in flow and static adhesion experiments. RESULTS: Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs and MDA-MB-231 cells, suggesting progression towards an EMT phenotype. Flow-stimulated SNAI2 was abrogated with Smad3 siRNA. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with different subtypes of breast cancer. We also observed increased adhesion, migration and invasion of flow-stimulated breast cancer cells compared to unstimulated controls. CONCLUSIONS: This study shows that fluid forces on the order of 1 Pa promote EMT and adhesion of breast cancer cells to an endothelial monolayer and identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.


Assuntos
Neoplasias da Mama/patologia , Adesão Celular , Transição Epitelial-Mesenquimal , Líquido Extracelular/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Metástase Neoplásica , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Microambiente Tumoral , Vimentina/genética , Vimentina/metabolismo
2.
Cell Mol Bioeng ; 15(1): 115-127, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35087607

RESUMO

INTRODUCTION: S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied. The goal of this study was to analyze expression profiles of S100 genes upon exposing HMECs to fluid flow. METHODS: HMECs and breast cancer cell lines were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in three independent clinical datasets. RESULTS: S100 genes were among the most upregulated genes upon flow stimulation. Network analysis revealed interactions between upregulated transcripts, including interactions between S100P, S100PBP, S100A4, S100A7, S100A8 and S100A9. Overexpression of S100s was also observed in patients with early stage breast cancer compared to normal breast tissue, and in most breast cancer patients. Finally, survival analysis revealed reduced survival times for patients with elevated expression of S100A7 and S100P. CONCLUSION: This study shows that exposing HMECs to fluid flow upregulates genes identified clinically to be overexpressed during breast cancer development, including S100A7 and S100P. These findings are the first to show that S100 genes are flow-responsive and might be participating in a fundamental adaptation pathway in normal tissue that is also active in breast cancer.

3.
Front Vet Sci ; 6: 329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681801

RESUMO

The accurate quantification of antimicrobial use (AMU) in production animals is critical for monitoring trends in exposure to antimicrobial drugs (AMD) over time and examining potential associations with antimicrobial resistance in bacteria. In this study, a census sample of cattle was used to quantify individually-dosed and in-feed AMU as both numbers of animal daily doses (nADD) and total grams of AMD (gAMD) used in cattle placed in 36 western Canadian feedlots between 1-November, 2008 and 31-October, 2012; representing about 21.5% of fed cattle in Canada during that time period. Of the ~2.6 million cattle placed during the 48-month period, 45% were calves, 63% were male, 62% arrived in the fall or winter, and 39% were assessed as high risk for developing bovine respiratory disease (BRD). The proportion of cattle categorized as high risk (HR) for developing BRD was consistent over the 4 years of placement cohorts. Both medically important AMU and ionophore use were summarized but presented separately. A decrease in AMU was observed over the study period, both as nADD and total gAMD, which was primarily driven by a decline in the in-feed administration of tetracyclines. Most in-feed AMU was directed toward prevention and control of liver abscesses. The majority of individually dosed AMU was administered as metaphylaxis to address BRD risks, with category III AMD (medium importance to human medicine as categorized by Health Canada Veterinary Drugs Directorate) used most frequently. Not surprisingly, risk level for developing BRD influenced parenteral AMD exposures, with 95% of cattle categorized as being HR for developing BRD receiving individually dosed AMD compared to 59% of cattle categorized as being low risk (LR) for developing BRD. Cattle categorized as HR for developing BRD were more likely to receive macrolides for BRD metaphylaxis compared to cattle categorized as LR for developing BRD, and cattle categorized as LR for developing BRD were more likely to receive tetracycline for the same purpose. In summary, these data provide an unprecedented representation of AMU in fed cattle in western Canada and direction for future monitoring of AMU in fed cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA