Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881301

RESUMO

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Assuntos
Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Cinetocoros/química , Complexos Multiproteicos/química , Animais , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Químicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
EMBO J ; 42(24): e114838, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984321

RESUMO

Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.


Assuntos
Dineínas , Cinetocoros , Dineínas/genética , Dineínas/metabolismo , Cinetocoros/metabolismo , Cinesinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Complexo Dinactina/genética , Mitose , Segregação de Cromossomos
3.
EMBO J ; 41(9): e110411, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35373361

RESUMO

In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.


Assuntos
Cinetocoros , Fuso Acromático , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
4.
EMBO J ; 39(12): e103180, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202322

RESUMO

Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Células HeLa , Humanos , Mutação Puntual , Domínios Proteicos
5.
Nature ; 537(7619): 249-253, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580032

RESUMO

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Assuntos
Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrômero/química , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fuso Acromático
6.
Mol Cell ; 53(4): 591-605, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530301

RESUMO

Faithful chromosome segregation is mandatory for cell and organismal viability. Kinetochores, large protein assemblies embedded in centromeric chromatin, establish a mechanical link between chromosomes and spindle microtubules. The KMN network, a conserved 10-subunit kinetochore complex, harbors the microtubule-binding interface. RWD domains in the KMN subunits Spc24 and Spc25 mediate kinetochore targeting of the microtubule-binding subunits by interacting with the Mis12 complex, a KMN subcomplex that tethers directly onto the underlying chromatin layer. Here, we show that Knl1, a KMN subunit involved in mitotic checkpoint signaling, also contains RWD domains that bind the Mis12 complex and that mediate kinetochore targeting of Knl1. By reporting the first 3D electron microscopy structure of the KMN network, we provide a comprehensive framework to interpret how interactions of RWD-containing proteins with the Mis12 complex shape KMN network topology. Our observations unveil a regular pattern in the construction of the outer kinetochore.


Assuntos
Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Sequência de Aminoácidos , Centrômero/química , Segregação de Cromossomos , Cristalografia por Raios X , Escherichia coli/metabolismo , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Microscopia Eletrônica , Microtúbulos/química , Mitose , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 293(26): 10084-10101, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29748388

RESUMO

The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising ∼2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end-directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod/Zwilch/ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E/BUBR1 and CENP-F/BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1/CENP-F and BUBR1/CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Cromossômicas não Histona/química , Humanos , Proteínas dos Microfilamentos/química , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Estrutura Quaternária de Proteína , Transporte Proteico , Especificidade por Substrato
8.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163019

RESUMO

Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin 7) and Dynein-Dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we report near-complete depletion of RZZS and DD from kinetochores after depletion of CENP-E and the outer kinetochore protein KNL1. With inhibited MPS1, CENP-E, which we show binds directly to RZZS, is required to retain kinetochore RZZS. An RZZS phosphomimetic mutant bypasses this requirement. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.

9.
Protein Sci ; 31(2): 528-537, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791727

RESUMO

As dividing cells transition into mitosis, hundreds of proteins are phosphorylated by a complex of cyclin-dependent kinase 1 (CDK1) and Cyclin-B, often at multiple sites. CDK1:Cyclin-B phosphorylation patterns alter conformations, interaction partners, and enzymatic activities of target proteins and need to be recapitulated in vitro for the structural and functional characterization of the mitotic protein machinery. This requires a pure and active recombinant kinase complex. The kinase activity of CDK1 critically depends on the phosphorylation of a Threonine residue in its activation loop by a CDK1-activating kinase (CAK). We developed protocols to activate CDK1:Cyclin-B either in vitro with purified CAKs or in insect cells through CDK-CAK co-expression. To boost kinase processivity, we reconstituted a ternary complex consisting of CDK1, Cyclin-B, and CKS1. In this work, we provide and compare detailed protocols to obtain and use highly active CDK1:Cyclin-B (CC) and CDK1:Cyclin-B:CKS1 (CCC).


Assuntos
Proteína Quinase CDC2 , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Humanos , Fosforilação
10.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36107127

RESUMO

Cytoplasmic Dynein 1, or Dynein, is a microtubule minus end-directed motor. Dynein motility requires Dynactin and a family of activating adaptors that stabilize the Dynein-Dynactin complex and promote regulated interactions with cargo in space and time. How activating adaptors limit Dynein activation to specialized subcellular locales is unclear. Here, we reveal that Spindly, a mitotic Dynein adaptor at the kinetochore corona, exists natively in a closed conformation that occludes binding of Dynein-Dynactin to its CC1 box and Spindly motif. A structure-based analysis identified various mutations promoting an open conformation of Spindly that binds Dynein-Dynactin. A region of Spindly downstream from the Spindly motif and not required for cargo binding faces the CC1 box and stabilizes the intramolecular closed conformation. This region is also required for robust kinetochore localization of Spindly, suggesting that kinetochores promote Spindly activation to recruit Dynein. Thus, our work illustrates how specific Dynein activation at a defined cellular locale may require multiple factors.


Assuntos
Proteínas de Ciclo Celular , Dineínas do Citoplasma , Complexo Dinactina , Proteínas de Ciclo Celular/metabolismo , Dineínas do Citoplasma/metabolismo , Complexo Dinactina/metabolismo , Cinetocoros/metabolismo , Conformação Proteica
11.
J Biol Chem ; 284(47): 32717-24, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19801675

RESUMO

The cytosolic adaptor protein Apaf-1 is a key player in the intrinsic pathway of apoptosis. Binding of mitochondrially released cytochrome c and of dATP or ATP to Apaf-1 induces the formation of the heptameric apoptosome complex, which in turn activates procaspase-9. We have re-investigated the chain of events leading from monomeric autoinhibited Apaf-1 to the functional apoptosome in vitro. We demonstrate that Apaf-1 does not require energy from nucleotide hydrolysis to eventually form the apoptosome. Despite a low intrinsic hydrolytic activity of the autoinhibited Apaf-1 monomer, nucleotide hydrolysis does not occur at any stage of the process. Rather, mere binding of ATP in concert with the binding of cytochrome c primes Apaf-1 for assembly. Contradicting the current view, there is no strict requirement for an adenine base in the nucleotide. On the basis of our results, we present a new model for the mechanism of apoptosome assembly.


Assuntos
Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/química , Caspases/metabolismo , Trifosfato de Adenosina/química , Animais , Apoptose , Caspase 9/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Insetos , Modelos Biológicos , Nucleotídeos/química
12.
Elife ; 82019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310234

RESUMO

Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.


Assuntos
Eletroporação , Imagem Molecular , Proteínas Recombinantes/metabolismo , Linhagem Celular , Cromossomos Humanos/metabolismo , Farnesiltranstransferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrodinâmica , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mutação/genética , Prenilação
13.
Structure ; 14(5): 881-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16698549

RESUMO

The novel Ras effector mNore1, capable of inducing apoptosis, is a multidomain protein. It comprises a C1 domain homologous to PKC and an RA domain similar to the Ras effectors AF-6 and RalGDS. Here, we determine the affinity of these two domains to the active forms of Ras and Rap1 using isothermal calorimetric titration. The interaction of Ras/Rap1-GTP with the RA domain of mNore1 is weakened significantly by direct binding of the C1 domain to the RA domain. In order to analyze this observation in atomic detail, we solved the C1 solution structure by NMR. By determining chemical shifts and relaxation rates, we can show an intramolecular complex of C1-RA. GTP-Ras titration and binding to RA disrupts this complex and displaces the C1 domain. Once the C1 domain tumbles freely in solution, a lipid binding interface becomes accessible. Furthermore, we provide evidence of phosphatidylinositol 3-phosphate binding of the free C1 domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Lipídeos/química , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
14.
J Cell Biol ; 216(4): 961-981, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28320825

RESUMO

Kinetochores are macromolecular assemblies that connect chromosomes to spindle microtubules (MTs) during mitosis. The metazoan-specific ≈800-kD ROD-Zwilch-ZW10 (RZZ) complex builds a fibrous corona that assembles on mitotic kinetochores before MT attachment to promote chromosome alignment and robust spindle assembly checkpoint signaling. In this study, we combine biochemical reconstitutions, single-particle electron cryomicroscopy, cross-linking mass spectrometry, and structural modeling to build a complete model of human RZZ. We find that RZZ is structurally related to self-assembling cytosolic coat scaffolds that mediate membrane cargo trafficking, including Clathrin, Sec13-Sec31, and αß'ε-COP. We show that Spindly, a dynein adaptor, is related to BicD2 and binds RZZ directly in a farnesylation-dependent but membrane-independent manner. Through a targeted chemical biology approach, we identify ROD as the Spindly farnesyl receptor. Our results suggest that RZZ is dynein's cargo at human kinetochores.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dineínas/metabolismo , Células HeLa , Humanos , Cinetocoros/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Microtúbulos/metabolismo , Mitose/fisiologia , Transporte Proteico/fisiologia
15.
J Mol Biol ; 348(3): 741-58, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15826668

RESUMO

Common domain databases contain sequence motifs which belong to the ubiquitin fold family and are called Ras binding (RB) and Ras association (RalGDS/AF6 Ras associating) (RA) domains. The name implies that they bind to Ras (or Ras-like) GTP-binding proteins, and a few of them have been documented to qualify as true Ras effectors, defined as binding only to the activated GTP-bound form of Ras. Here we have expressed a large number of these domains and investigated their interaction with Ras, Rap and M-Ras. While their (albeit weak) sequence homology suggest that the domains adopt a common fold, not all of them bind to Ras proteins, irrespective of whether they are called RB or RA domains. We used fluorescence spectroscopy and isothermal titration calorimetry to show that the binding affinities vary over a large range, and are usually specific for either Ras or Rap. Moreover, the specificity is dictated by a set of key residues in the interface. Stopped-flow kinetic analysis showed that the association rate constants determine the different affinities of effector binding, while the dissociation rate constants are in a similar range. Manual sequence analysis allowed us to define positively charged sequence epitopes in certain secondary structure elements of the ubiquitin fold (beta1, beta2 and alpha1) which are located at similar positions and comprise the hot spots of the binding interface. These residues are important to qualify an RA/RB domain as a true candidate Ras or Rap effector.


Assuntos
Conformação Proteica , Proteínas ras/metabolismo , Animais , Calorimetria , Dicroísmo Circular , DNA Polimerase Dirigida por DNA , Epitopos , Humanos , Modelos Moleculares , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/química , Proteínas ras/genética
16.
J Mol Biol ; 348(3): 759-75, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15826669

RESUMO

Considering the large number of putative Ras effector proteins, it is highly desirable to develop computational methods to be able to identify true Ras binding molecules. Based on a limited sequence homology among members of the Ras association (RA) and Ras binding (RB) sub-domain families of the ubiquitin super-family, we have built structural homology models of Ras proteins in complex with different RA and RB domains, using the FOLD-X software. A critical step in our approach is to use different templates of Ras complexes, in order to account for the structural variation among the RA and RB domains. The homology models are validated by predicting the effect of mutating hot spot residues in the interface, and residues important for the specificity of interaction with different Ras proteins. The FOLD-X calculated energies of the best-modelled complexes are in good agreement with previously published experimental data and with new data reported here. Based on these results, we can establish energy thresholds above, or below which, we can predict with 96% confidence that a RA/RB domain will or will not interact with Ras. This study shows the importance of in depth structural analysis, high quality force-fields and modelling for correct prediction. Our work opens the possibility of genome-wide prediction for this protein family and for others, where there is enough structural information.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas ras/química , Proteínas ras/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Distribuição Aleatória , Alinhamento de Sequência , Termodinâmica
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 438-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849506

RESUMO

The spindle-assembly checkpoint (SAC) monitors kinetochore-microtubule attachment during mitosis. In metazoans, the three-subunit Rod-Zwilch-ZW10 (RZZ) complex is a crucial SAC component that interacts with additional SAC-activating and SAC-silencing components, including the Mad1-Mad2 complex and cytoplasmic dynein. The RZZ complex contains two copies of each subunit and has a predicted molecular mass of ∼800 kDa. Given the low abundance of the RZZ complex in natural sources, its recombinant reconstitution was attempted by co-expression of its subunits in insect cells. The RZZ complex was purified to homogeneity and subjected to systematic crystallization attempts. Initial crystals containing the entire RZZ complex were obtained using the sitting-drop method and were subjected to optimization to improve the diffraction resolution limit. The crystals belonged to space group P31 (No. 144) or P32 (No. 145), with unit-cell parameters a = b = 215.45, c = 458.7 Å, α = ß = 90.0, γ = 120.0°.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Humanos , Insetos , Dados de Sequência Molecular
18.
FEBS Lett ; 588(18): 3327-32, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25064844

RESUMO

The NOD-like receptor NLRP1 (NLR family, pyrin domain containing 1) senses the presence of the bacterial cell wall component l-muramyl dipeptide (MDP) inside the cell. We determined the crystal structure of the LRR domain of human NLRP1 in the absence of MDP to a resolution of 1.65Å. The fold of the structure can be assigned to the ribonuclease inhibitor-like class of LRR proteins. We compared our structure with X-ray models of the LRR domains of NLRX1 and NLRC4 and a homology model of the LRR domain of NOD2. We conclude that the MDP binding site of NLRP1 is not located in the LRR domain.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas NLR , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Homologia Estrutural de Proteína
19.
Structure ; 19(8): 1074-83, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827944

RESUMO

The apoptotic protease-activating factor 1 (Apaf-1) relays the death signal in the mitochondrial pathway of apoptosis. Apaf-1 oligomerizes on binding of mitochondrially released cytochrome c into the heptameric apoptosome complex to ignite the downstream cascade of caspases. Here, we present the 3.0 Å crystal structure of full-length murine Apaf-1 in the absence of cytochrome c. The structure shows how the mammalian death switch is kept in its "off" position. By comparing the off state with a recent cryo-electron microscopy derived model of Apaf-1 in its apoptosomal conformation, we depict the molecular events that transform Apaf-1 from autoinhibited monomer to a building block of the caspase-activating apoptosome. Moreover, we have solved the crystal structure of the R265S mutant of full-length murine Apaf-1 in the absence of cytochrome c to 3.55 Å resolution and we show that proper function of Apaf-1 relies on R265 in the vicinity of the bound nucleotide.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/química , Mitocôndrias/fisiologia , Transdução de Sinais , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/química , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Camundongos , Mutação de Sentido Incorreto , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Eur J Biochem ; 269(13): 3270-8, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12084068

RESUMO

Guanosine triphosphate nucleotide analogues such as GppNHp (also named GMPPNP) or GTPgammaS are widely used to stabilize rapidly hydrolyzing protein-nucleotide complexes and to investigate biochemical reaction pathways. Here we describe the chemical synthesis of guanosine 5'-O-(gamma-amidotriphosphate) (GTPgammaNH(2)) and a new synthesis of guanosine 5'-O-(gamma-fluorotriphosphate) (GTPgammaF). The two nucleotides were characterized using NMR spectroscopy and isothermal titration calorimetry. Chemical shift data on (31)P, (19)F and (1)H NMR resonances are tabulated. For GTPgammaNH(2) the enthalpy of magnesium coordination is DeltaH degrees = 3.9 kcal.mol(-1) and the association constant K(a) is 0.82 mm(-1). The activation energy for GTPgammaNH(2).Mg2+ complex formation is DeltaH++ = 7.8 +/- 0.15 kcal.mol(-1), similar to that for the natural substrate GTP. For GTPgammaF we obtained a similar enthalpy of DeltaH degrees = 3.9 kcal.mol(-1) while the magnesium association constant is only K(a) = 0.2 mm(-1). The application of both guanine nucleotide analogues to the GTP-binding protein Ras was investigated. The rate of hydrolysis of GTPgammaNH(2) bound to Ras protein lay between the rates found for Ras-bound GTPgammaS and GppNHp, while Ras-catalysed hydrolysis of GTPgammaF was almost as fast as for GTP. The two compounds extend the variety of nucleotide analogues and may prove useful in structural, kinetic and cellular studies.


Assuntos
Bioquímica/métodos , Guanosina Trifosfato/química , Calorimetria/métodos , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/síntese química , Guanosina Trifosfato/metabolismo , Hidrólise , Magnésio/metabolismo , Espectroscopia de Ressonância Magnética , Metais/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA