Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunity ; 50(4): 1069-1083.e8, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30926233

RESUMO

Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.


Assuntos
Acne Vulgar/imunologia , Células Dendríticas/classificação , Infecções por Bactérias Gram-Positivas/imunologia , Infiltração de Neutrófilos/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Acne Vulgar/microbiologia , Animais , Apresentação de Antígeno , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/imunologia , Orelha Externa , Regulação da Expressão Gênica , Ontologia Genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Propionibacterium acnes , RNA Mensageiro/biossíntese , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
2.
J Immunol ; 195(10): 4953-61, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466959

RESUMO

Psoriasis is a chronic inflammatory skin disease of unknown etiology. Previous studies showed that short-term, 5-7 d-long application of imiquimod (IMQ), a TLR7 agonist, to the skin of mice triggers a psoriasis-like inflammation. In the current study, by applying IMQ for 14 consecutive d, we established an improved mouse psoriasis-like model in that it recapitulated many of the clinical and cellular hallmarks observed in human patients during both the early-onset and the late-stable phase of psoriasis. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs, macrophages, and plasmacytoid DCs in the skin, we addressed their dynamics during both phases of our biphasic psoriasis-like model. Plasmacytoid DCs were not detectable during the whole course of IMQ treatment. During the early phase, neutrophils infiltrated the epidermis, whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the late phase, LCs and macrophage numbers transiently increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by global transcriptional analysis. Genetic depletion of LCs permitted to evaluate their function during both phases of the biphasic psoriasis-like model and demonstrated that their absence resulted in a late phase that is associated with enhanced neutrophil infiltration. Therefore, our data support an anti-inflammatory role of LCs during the course of psoriasis-like inflammation.


Assuntos
Aminoquinolinas/efeitos adversos , Células Dendríticas/imunologia , Macrófagos/imunologia , Psoríase/induzido quimicamente , Psoríase/imunologia , Pele/imunologia , Transcriptoma/efeitos dos fármacos , Aminoquinolinas/farmacologia , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Humanos , Imiquimode , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Psoríase/patologia , Pele/patologia
3.
Proc Natl Acad Sci U S A ; 110(26): 10723-8, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754427

RESUMO

Psoriasis is an autoinflammatory skin disease of unknown etiology. Topical application of Aldara cream containing the Toll-like receptor (TLR)7 agonist Imiquimod (IMQ) onto patients induces flares of psoriasis. Likewise, in mice IMQ triggers pathological changes closely resembling psoriatic plaque formation. Key cytokines like IL-23 and type-I IFN (IFN-I), both being produced mainly by dendritic cells (DCs), have been implicated in psoriasis. Although plasmacytoid DCs (pDCs) are the main source of IFNα and thought to initiate disease, conventional DCs (cDCs) appear to maintain the psoriatic lesions. Any role of cDCs during lesion formation remains elusive. Here, we report that selective activation of TLR7 signaling specifically in CD11c(+) DCs was sufficient to induce psoriasiform skin disease in mice. Intriguingly, both pDCs and the IFN-I pathway were dispensable for the development of local skin inflammation. Selective TLR7 triggering of Langerin(+) DCs resulted in attenuated disease, whereas their depletion did not alter the severity of skin lesions. Moreover, after IMQ-painting, IL-23 was exclusively produced by Langerin(neg) DCs in vivo. In conclusion, TLR7-activated Langerin(neg) cDCs trigger psoriatic plaque formation via IL-23-mediated activation of innate IL-17/IL-22-producing lymphocytes, independently of pDCs or IFN-I. These results suggest therapeutic targeting of IL-23 production by cDCs to refine current treatment strategies for psoriasis.


Assuntos
Antígenos de Superfície/genética , Interleucina-23/biossíntese , Células de Langerhans/imunologia , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Lectinas de Ligação a Manose/deficiência , Lectinas de Ligação a Manose/genética , Psoríase/imunologia , Aminoquinolinas/administração & dosagem , Animais , Antígenos de Superfície/biossíntese , Modelos Animais de Doenças , Imiquimode , Células de Langerhans/efeitos dos fármacos , Lectinas Tipo C/biossíntese , Lectinas de Ligação a Manose/biossíntese , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Psoríase/etiologia , Psoríase/patologia , Receptor 7 Toll-Like/agonistas
4.
Cancer Immunol Immunother ; 62(12): 1769-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24114143

RESUMO

RNA transfection is a standard method to load dendritic cells (DC) with antigen for therapeutic cancer vaccination. While electroporation yields high transfection efficiency and satisfying expression levels, lipofection results in only few cells expressing high amounts of antigen. We compared antigen loading of human monocyte-derived DC by MelanA RNA electroporation and lipofection. No differences in phenotype or migrational capacity were detected, but lipofected DC induced stronger cytokine secretion by antigen-specific T cells and were superior in priming and boosting of MelanA-specific CD8(+) T cells. Interestingly, T cells stimulated with the differently transfected DC did not differ in their functional avidity. To determine whether the amount of antigen per cell is indeed responsible for the superiority of the lipofected DC, we increased the amount of MelanA RNA fivefold and mixed those DC with mock-electroporated ones to mimic the antigen distribution of lipofected cells. This significantly improved the stimulatory capacity, indicating that indeed the amount of antigen per cell seems to be the responsible feature for the observed superiority of lipofected DCs. These data suggest that a few DC that express high amounts of antigen are more immunogenic than many DC expressing lower amounts, although this needs to be tested in a two-armed immunogenicity trial.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígeno MART-1/imunologia , Monócitos/imunologia , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Eletroporação , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Antígeno MART-1/genética , Antígeno MART-1/metabolismo , Monócitos/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Immunol ; 186(4): 2613-22, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21242515

RESUMO

IL-1F6, IL-1F8, and IL-1F9 and the IL-1R6(RP2) receptor antagonist IL-1F5 constitute a novel IL-1 signaling system that is poorly characterized in skin. To further characterize these cytokines in healthy and inflamed skin, we studied their expression in healthy control, uninvolved psoriasis, and psoriasis plaque skin using quantitative RT-PCR and immunohistochemistry. Expression of IL-1F5, -1F6, -1F8, and -1F9 were increased 2 to 3 orders of magnitude in psoriasis plaque versus uninvolved psoriasis skin, which was supported immunohistologically. Moreover, treatment of psoriasis with etanercept led to significantly decreased IL-1F5, -1F6, -1F8, and -1F9 mRNAs, concomitant with clinical improvement. Similarly increased expression of IL-1F5, -1F6, -1F8, and -1F9 was seen in the involved skin of two mouse models of psoriasis. Suggestive of their importance in inflamed epithelia, IL-1α and TNF-α induced IL-1F5, -1F6, -1F8, and -1F9 transcript expression by normal human keratinocytes. Microarray analysis revealed that these cytokines induce the expression of antimicrobial peptides and matrix metalloproteinases by reconstituted human epidermis. In particular, IL-1F8 increased mRNA expression of human ß-defensin (HBD)-2, HBD-3, and CAMP and protein secretion of HBD-2 and HBD-3. Collectively, our data suggest important roles for these novel cytokines in inflammatory skin diseases and identify these peptides as potential targets for antipsoriatic therapies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Interleucina-1/fisiologia , Interleucinas/fisiologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Psoríase/imunologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Epiderme/enzimologia , Epiderme/imunologia , Epiderme/patologia , Regulação Enzimológica da Expressão Gênica/imunologia , Humanos , Interleucina-1/genética , Queratinócitos/enzimologia , Metaloproteinases da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Psoríase/metabolismo , Psoríase/patologia , Adulto Jovem
6.
Sci Immunol ; 5(45)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169954

RESUMO

Conventional dendritic cells expressing the XCR1 chemokine receptor (cDC1s) excel at cross-presentation. Here, we developed and used a mouse model in which a Cre recombinase is expressed under the control of the Xcr1 gene while preserving XCR1 expression. We used it to generate mice with conditional deletion of MHC class II (MHCII) molecules on cDC1s. By preventing cDC1s to receive suppressive regulatory T cell inputs via MHCII-restricted interactions, the objective of the present study was to gauge whether MHCII-deficient cDC1s lose their capacity of tolerizing autoreactive CD8+ T cells. Whereas MHCII+ cDC1 readily cross-tolerized strongly autoreactive CD8+ T cells specific for a keratinocyte-derived self-antigen, MHCII-deficient cDC1s converted them into potent effectors capable of triggering a fast-onset lethal autoimmunity associated with severe skin histopathological manifestations. Preventing egress of such pathogenic self-reactive CD8+ T cell effectors from the cutaneous draining lymph nodes abrogated the autoimmune condition. Therefore, our results revealed that the cross-tolerizing capacity of cDC1s is not a property fully acquired at the time they undergo homeostatic maturation but needs to be enforced via MHCII-restricted, suppressive interactions with regulatory T cells.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
7.
J Invest Dermatol ; 139(3): 638-647, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30367871

RESUMO

Besides skin inflammation, patients with severe psoriasis suffer from an increased risk of cardiovascular mortality. IL-17A plays a central role in the development of psoriasis and might connect skin and vascular disease. The aim of this study was to clarify whether anti-IL-17A therapy could also ameliorate the vascular dysfunction associated with severe psoriasis. We analyzed three murine models with varying severities of psoriasis-like skin disease concerning their vascular function and inflammation: (i) K14-IL-17Aind/+ mice with keratinocyte-specific IL-17A overexpression and an early-onset severe psoriasis-like phenotype; (ii) homozygous CD11c-IL-17Aind/ind and heterozygous CD11c-IL-17Aind/+ mice overexpressing IL-17A in CD11c+ cells, leading to a delayed onset of moderate psoriasis-like skin disease; and (iii) the acute model of imiquimod-induced psoriasis-like skin inflammation. Similar to the severity of skin disease, vascular dysfunction correlated with peripheral IL-17A levels and neutrophil infiltration into the aortic vessel wall. Successful anti-IL-17A treatment of psoriatic skin lesions diminished peripheral oxidative stress levels, proinflammatory cytokines, and vascular inflammation. These data highlight the pivotal role of IL-17A linking the development of skin lesions and vascular disease in psoriasis. Anti-IL-17A therapy might thus represent a useful approach to attenuate and prevent vascular disease in psoriasis patients.


Assuntos
Aorta/imunologia , Imunoterapia/métodos , Inflamação/imunologia , Interleucina-17/metabolismo , Psoríase/imunologia , Pele/imunologia , Doenças Vasculares/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imiquimode , Interleucina-17/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Estresse Oxidativo , Psoríase/terapia , Espécies Reativas de Oxigênio/metabolismo
8.
Front Immunol ; 9: 2805, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564233

RESUMO

Type 1 conventional DCs (cDC1) excel in the cross-priming of CD8+ T cells, which is crucial for orchestrating efficient immune responses against viruses or tumors. However, our understanding of their physiological functions and molecular regulation has been limited by the lack of proper mutant mouse models allowing their conditional genetic targeting. Because the Xcr1 and A530099j19rik (Karma/Gpr141b) genes belong to the core transcriptomic fingerprint of mouse cDC1, we used them to engineer two novel Cre-driver lines, the Xcr1Cre and KarmaCre mice, by knocking in an IRES-Cre expression cassette into their 3'-UTR. We used genetic tracing to characterize the specificity and efficiency of these new models in several lymphoid and non-lymphoid tissues, and compared them to the Clec9aCre mouse model, which targets the immediate precursors of cDCs. Amongst the three Cre-driver mouse models examined, the Xcr1Cre model was the most efficient and specific for the fate mapping of all cDC1, regardless of the tissues examined. The KarmaCre model was rather specific for cDC1 when compared with the Clec9aCre mouse, but less efficient than the Xcr1Cre model. Unexpectedly, the Xcr1Cre model targeted a small fraction of CD4+ T cells, and the KarmaCre model a significant proportion of mast cells in the skin. Importantly, the targeting specificity of these two mouse models was not changed upon inflammation. A high frequency of germline recombination was observed solely in the Xcr1Cre mouse model when both the Cre and the floxed alleles were brought by the same gamete irrespective of its gender. Xcr1, Karma, and Clec9a being differentially expressed within the cDC1 population, the three CRE-driver lines examined showed distinct recombination patterns in cDC1 phenotypic subsets. This advances our understanding of cDC1 subset heterogeneity and the differentiation trajectory of these cells. Therefore, to the best of our knowledge, upon informed use, the Xcr1Cre and KarmaCre mouse models represent the best tools currently reported to specifically and faithfully target cDC1 in vivo, both at steady state and upon inflammation. Future use of these mutant mouse models will undoubtedly boost our understanding of the biology of cDC1.


Assuntos
Apresentação Cruzada/genética , Células Dendríticas/fisiologia , Receptores de Quimiocinas/genética , Regiões 3' não Traduzidas/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Pele/fisiopatologia
9.
PLoS One ; 6(4): e18266, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21483750

RESUMO

Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Psoríase/genética , Adolescente , Adulto , Idoso , Aminoquinolinas/uso terapêutico , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Humanos , Imiquimode , Queratinócitos/metabolismo , Leucócitos/imunologia , Camundongos , Pessoa de Meia-Idade , Mitose/genética , Fenótipo , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Receptores Proteína Tirosina Quinases/genética , Receptor TIE-2 , Transcrição Gênica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA