RESUMO
Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2 Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2 Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.
RESUMO
3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2 Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami-Larkin-Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V-1 s-1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2 Te3 features surface carrier properties that are of importance for technical applications.
RESUMO
Additive manufacturing is a promising technology for the fabrication of customized implants with complex geometry. The objective of this study was to investigate the initial cell-material interaction of degradable Fe-30Mn-1C-0.02S stent structures in comparison to conventional 316L as a reference, both processed by laser powder bed fusion. FeMn-based alloys have comparable mechanical properties with clinically applied AISI 316L for a corrosion-resistant stent material. Different corrosion stages of the as-built Fe-30Mn-1C-0.02S stent surfaces were simulated by pre-conditioning in DMEM under cell culture conditions for 2 h, 7 days, and 28 days. Human umbilical vein endothelial cells (HUVECs) were directly seeded onto the pre-conditioned samples, and cell viability, adherence, and morphology were analyzed. These studies were accompanied by measurements of iron and manganese ion release and Auger electron spectroscopy to evaluate the influence of corrosion products and degradation on the cells. In the initial phase (2 h of pre-conditioning), HUVECs were able to attach but the cell number decreased over the cultivation period of 14 days and the CD31 staining pattern of intercellular contacts was disordered. At later time points of corrosion (7 and 28 days of pre-conditioning), CD31 staining was distinctly located at the intercellular contacts, and the cell density increased after seeding and was stable for up to 14 days. Formation of a complex degradation layer, which had a composition and thickness dependent on the pre-conditioning time, led to a reduced ion release and finally showed a positive effect on cell survival. Concluding, our data suggest the suitability of Fe-30Mn-1C-0.02S for in vivo applications.
Assuntos
Materiais Biocompatíveis/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ferro/metabolismo , Lasers , Manganês/metabolismo , Materiais Biocompatíveis/química , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/química , Humanos , Íons/química , Íons/metabolismo , Ferro/química , Manganês/química , Teste de MateriaisRESUMO
The ZrNiSn-based half-Heusler compounds are promising for thermoelectric applications in the mid-to-high temperature range. However, their thermoelectric performance was greatly limited due to the remaining high thermal conductivity, especially the lattice thermal conductivity. Herein, we report the synthesis of pristine half-Heusler ZrNiSn through direct mechanical alloying at a liquid nitrogen temperature (i.e., cryomilling) followed by spark plasma sintering. It is shown that the onset sintering temperature is greatly reduced for the cryomilled powders with a high density. A reduced thermal conductivity is subsequently realized from room temperature to 700 °C in the cryomilled samples than the one that was differently prepared (from 7.3 to 4.5 W/m K at room temperature). The pronounced reduction in thermal conductivity of ZrNiSn yields a maximum zT of â¼0.65 at 700 °C. Our study shows the possibility of cryomilling in advancing the thermoelectric performance through enhanced phonon scattering.
RESUMO
Silicon waste (SW), a byproduct from the photovoltaic industry, can be a prospective and environmentally friendly source for silicon in the field of thermoelectric (TE) materials. While thermoelectricity is not as sensitive toward impurities as other semiconductor applications, the impurities within the SW still impede the enhancement of the thermoelectric figure of merit, zT. Besides, the high thermal conductivity of silicon limits its applications as a TE material. In this work, we employ traditionally metallurgical methods in industry reducing the impurities in SW to an extremely low level in an environmentally friendly and economical way, and then the thermal conductivity of purified silicon is greatly reduced due to the implementation of multiscale phonon scattering without degrading the power factor seriously. Benefiting from these strategies, from 323 to 1123 K, for the sample made from purified silicon waste, the average zT, relevant for engineering application, is increased to 0.32, higher than that of the state-of-the-art n-type Ge-free bulk silicon materials made from commercially available silicon, but the total cost of our samples is negligible.
RESUMO
The use of SiO(2) as a catalyst for graphitic nanostructures, such as carbon nanotubes and graphene, is a new and rapidly developing catalyst system. A key question is whether carbide phases form in the reaction. We show the formation of SiC from SiO(2) nanoparticles for the synthesis of graphitic carbon nanostructures via chemical vapor deposition (CVD) at 900 degrees C. Our findings point to the carbothermal reduction of SiO(2) in the CVD reaction. The inclusion of triethyl borate apparently accelerates the process and leads to improved yields. The study helps better understand the growth mechanisms at play in carbon nanotube and carbon nanofiber formation when using SiO(2) catalysts.