RESUMO
Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.
Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Citometria de Fluxo , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Macaca mulatta , Reação em Cadeia da Polimerase em Tempo Real , Vagina/imunologia , Vagina/virologia , Carga ViralRESUMO
The live attenuated simian immunodeficiency virus (LASIV) vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Evasão da Resposta Imune/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Citometria de Fluxo , Macaca mulatta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vacinas Atenuadas/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Natural killer (NK) cells are classically viewed as effector cells that kill virus-infected and neoplastic cells, but recent studies have identified a rare mucosal NK- cell subpopulation secreting the TH17 cytokine IL-22. Here, we report identification of 2 distinct lineages of mucosal NK cells characterized as NKG2A(+)NFIL3(+)RORC(-) and NKp44(+)NFIL3(+)RORC(+). NKG2A(+) NK cells were systemically distributed, cytotoxic, and secreted IFN-γ, whereas NKp44(+) NK cells were mucosae-restricted, noncytotoxic, and produced IL-22 and IL-17. During SIV infection, NKp44(+) NK cells became apoptotic, were depleted, and had an altered functional profile characterized by decreased IL-17 secretion; increased IFN-γ secretion; and, surprisingly, increased potential for cytotoxicity. NKp44(+) NK cells showed no evidence of direct SIV infection; rather, depletion and altered function were associated with SIV-induced up-regulation of inflammatory mediators in the gut, including indoleamine 2,3-dioxygenase 1. Furthermore, treatment of NKp44(+) NK cells with indoleamine 2,3-dioxygenase 1 catabolites in vitro ablated IL-17 production in a dose-dependent manner, whereas other NK-cell functions were unaffected. Thus lentiviral infection both depletes and modifies the functional repertoire of mucosal NK cells involved in the maintenance of gut integrity, a finding that highlights the plasticity of this rare mucosal NK-cell population.
Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/farmacologia , Inflamação/imunologia , Interleucina-17/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem da Célula/imunologia , Citotoxicidade Imunológica/imunologia , Citometria de Fluxo , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Imunidade nas Mucosas/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Interleucinas/biossíntese , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Macaca mulatta , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Cultura Primária de Células , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Interleucina 22RESUMO
Multiple studies suggest that plasmacytoid dendritic cells (pDCs) are depleted and dysfunctional during human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection, but little is known about pDCs in the gut-the primary site of virus replication. Here, we show that during SIV infection, pDCs were reduced 3--fold in the circulation and significantly upregulated the gut-homing marker α4ß7, but were increased 4-fold in rectal biopsies of infected compared to naive macaques. These data revise the understanding of pDC immunobiology during SIV infection, indicating that pDCs are not necessarily depleted, but instead may traffic to and accumulate in the gut mucosa.
Assuntos
Células Dendríticas/imunologia , Trato Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Biópsia , Citometria de Fluxo , Trato Gastrointestinal/patologia , Expressão Gênica , Imuno-Histoquímica , Integrinas/biossíntese , Mucosa Intestinal/patologia , Macaca mulatta , Microscopia de Fluorescência , Reto/imunologia , Reto/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologiaRESUMO
Natural killer (NK) cells contribute to control of HIV/SIV infection. We defined macaque NK-cell subsets based on expression of CD56 and CD16 and found their distribution to be highly disparate. CD16(+) NK cells predominated in peripheral blood, whereas most mucosal NK cells were CD56(+), and lymph nodes contained both CD56(+) and CD16(-)CD56(-) (double-negative [DN]) subsets. Functional profiles were also distinct among subsets--CD16(+) NK cells expressed high levels of cytolytic molecules, and CD56(+) NK cells were predominantly cytokine-secreting cells, whereas DN NK possessed both functions. In macaques chronically infected with SIV, circulating CD16(+) and DN NK cells were expanded in number and, although markers of cytoxicity increased, cytokine secretion decreased. Notably, CD56(+) NK cells in SIV-infected animals up-regulated perforin, granzyme B, and CD107a. In contrast, the lymph node-homing molecules CD62 ligand (CD62L) and C-C chemokine receptor type 7 (CCR7), which are expressed primarily on CD56(+) and DN NK cells, were significantly down-regulated on NK cells from infected animals. These data demonstrate that SIV infection drives a shift in NK-cell function characterized by decreased cytokine production, expanded cytotoxicity, and trafficking away from secondary lymphoid organs, suggesting that the NK-cell repertoire is not only heterogeneous but also plastic.
Assuntos
Células Matadoras Naturais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Antígeno CD56/metabolismo , Degranulação Celular , Citocinas/biossíntese , Citotoxicidade Imunológica , Feminino , Granzimas/metabolismo , Células Matadoras Naturais/classificação , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Macaca mulatta , Masculino , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/patologia , Perforina/metabolismo , Receptores de IgG/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologiaRESUMO
Since the vast majority of infections occur at mucosal surfaces, accurate characterization of mucosal immune cells is critically important for understanding transmission and control of infectious diseases. Standard flow cytometric analysis of cells obtained from mucosal tissues can provide valuable information on the phenotype of mucosal leukocytes and their relative abundance, but does not provide absolute cell counts of mucosal cell populations. We developed a bead-based flow cytometry assay to determine the absolute numbers of multiple mononuclear cell types in colorectal biopsies of rhesus macaques. Using 10-color flow cytometry panels and pan-fluorescent beads, cells were enumerated in biopsy specimens by adding a constant ratio of beads per mg of tissue and then calculating cell numbers/mg of tissue based on cell-to-bead ratios determined at the time of sample acquisition. Testing in duplicate specimens showed the assay to be highly reproducible (Spearman R=0.9476, P<0.0001). Using this assay, we report enumeration of total CD45(+) leukocytes, CD4(+) and CD8(+) T cells, B cells, NK cells, CD14(+) monocytes, and myeloid and plasmacytoid dendritic cells in colorectal biopsies, with cell numbers in normal rhesus macaques varying from medians of 4486 cells/mg (T cells) to 3 cells/mg (plasmacytoid dendritic cells). This assay represents a significant advancement in rapid, accurate quantification of mononuclear cell populations in mucosal tissues and could be applied to provide absolute counts of a variety of different cell populations in diverse tissues.