Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 391-399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408487

RESUMO

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Assuntos
Padronização Corporal , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Crista Neural/citologia , Crista Neural/embriologia , Tubo Neural/citologia , Tubo Neural/embriologia , Células-Tronco Pluripotentes/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Medula Espinal/citologia , Medula Espinal/embriologia
2.
Nature ; 616(7955): 143-151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991123

RESUMO

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Assuntos
Multiômica , Primeiro Trimestre da Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Relações Materno-Fetais/fisiologia , Análise de Célula Única , Miométrio/citologia , Miométrio/fisiologia , Diferenciação Celular , Organoides/citologia , Organoides/fisiologia , Células-Tronco/citologia , Transcriptoma , Fatores de Transcrição/metabolismo , Comunicação Celular
3.
Development ; 139(13): 2288-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22669820

RESUMO

The transcription factors Nanog and Oct4 regulate pluripotency in the pre-implantation epiblast and in derivative embryonic stem cells. During post-implantation development, the precise timing and mechanism of the loss of pluripotency is unknown. Here, we show that in the mouse, pluripotency is extinguished at the onset of somitogenesis, coincident with reduced expression and chromatin accessibility of Oct4 and Nanog regulatory regions. Prior to somitogenesis expression of both Nanog and Oct4 is regionalized. We show that pluripotency tracks the in vivo level of Oct4 and not Nanog by assessing the ability to reactivate or maintain Nanog expression in cell culture. Enforced Oct4 expression in somitogenesis-stage tissue provokes rapid reopening of Oct4 and Nanog chromatin, Nanog re-expression and resuscitates moribund pluripotency. Our data suggest that decreasing Oct4 expression is converted to a sudden drop in competence to maintain pluripotency gene regulatory network activity that is subsequently stabilized by epigenetic locks.


Assuntos
Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Células Cultivadas , Cromatina/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Proteína Homeobox Nanog
4.
Nat Protoc ; 19(4): 1149-1182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302732

RESUMO

Human primordial germ cells (hPGCs), the precursors of eggs and sperm, start their complex development shortly after specification and during their migration to the primitive gonads. Here, we describe protocols for specifying hPGC-like cells (hPGCLCs) from resetting precursors and progressing them with the support of human hindgut organoids. Resetting hPGCLCs (rhPGCLCs) are specified from human embryonic stem cells (hESCs) transitioning from the primed into the naive state of pluripotency. Hindgut organoids are also derived from hESCs after a sequential differentiation into a posterior endoderm/hindgut fate. Both rhPGCLCs and hindgut organoids are combined and co-cultured for 25 d. The entire procedure takes ~1.5 months and can be successfully implemented by a doctoral or graduate student with basic skills and experience in hESC cultures. The co-culture system supports the progression of rhPGCLCs at a developmental timing analogous to that observed in vivo. Compared with previously developed hPGCLC progression protocols, which depend on co-cultures with mouse embryonic gonadal tissue, our co-culture system represents a developmentally relevant model closer to the environment that hPGCs first encounter after specification. Together with the potential for investigations of events during hPGC specification and early development, these protocols provide a practical approach to designing efficient models for in vitro gametogenesis. Notably, the rhPGCLC-hindgut co-culture system can also be adapted to study failings in hPGC migration, which are associated with the etiology of some forms of infertility and germ cell tumors.


Assuntos
Endoderma , Sêmen , Humanos , Masculino , Animais , Camundongos , Células Germinativas , Diferenciação Celular , Organoides
5.
Nucleic Acids Res ; 39(14): 5837-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21470962

RESUMO

We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.


Assuntos
Sítios de Splice de RNA , Software , Sequência de Bases , Sequência Consenso , Evolução Molecular , Etiquetas de Sequências Expressas/química , Genes , Doenças Genéticas Inatas/genética , Genômica/métodos , Humanos , Íntrons , Alinhamento de Sequência , Análise de Sequência de Proteína
6.
Cell Rep ; 42(1): 111907, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640324

RESUMO

Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC development, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study provides the foundation for developing efficient in vitro models of human gametogenesis.


Assuntos
Células Germinativas , Sêmen , Humanos , Masculino , Diferenciação Celular , Embrião de Mamíferos , Organoides
7.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217306

RESUMO

Human germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. Although direct studies are hindered, here, we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation using in vivo datasets from human and nonhuman primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Furthermore, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A-positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments shows that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion and is subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.


Assuntos
Embrião de Mamíferos , Redes Reguladoras de Genes , Animais , Humanos , Redes Reguladoras de Genes/genética , Diferenciação Celular/genética , Camadas Germinativas , Células Germinativas
8.
Sci Adv ; 9(3): eade1257, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652508

RESUMO

Epigenetic resetting in the mammalian germ line entails acute DNA demethylation, which lays the foundation for gametogenesis, totipotency, and embryonic development. We characterize the epigenome of hypomethylated human primordial germ cells (hPGCs) to reveal mechanisms preventing the widespread derepression of genes and transposable elements (TEs). Along with the loss of DNA methylation, we show that hPGCs exhibit a profound reduction of repressive histone modifications resulting in diminished heterochromatic signatures at most genes and TEs and the acquisition of a neutral or paused epigenetic state without transcriptional activation. Efficient maintenance of a heterochromatic state is limited to a subset of genomic loci, such as evolutionarily young TEs and some developmental genes, which require H3K9me3 and H3K27me3, respectively, for efficient transcriptional repression. Accordingly, transcriptional repression in hPGCs presents an exemplary balanced system relying on local maintenance of heterochromatic features and a lack of inductive cues.


Assuntos
Metilação de DNA , Código das Histonas , Animais , Humanos , Elementos de DNA Transponíveis/genética , Epigênese Genética , Células Germinativas , Mamíferos/genética
9.
Methods Mol Biol ; 2214: 143-155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32944908

RESUMO

Immunofluorescence staining enables the visualization of protein expression at a cellular or even sub-nuclear level. Whole-mount staining preserves the three-dimensional spatial information in biological samples allowing a comprehensive interpretation of expression domains. Here we describe the sample processing, protein detection using antibodies and confocal imaging of isolated preimplantation to early postimplantation mouse embryos up to Embryonic day 8.0 (E8.0).


Assuntos
Embrião de Mamíferos/ultraestrutura , Imunofluorescência/métodos , Camundongos/embriologia , Microscopia Confocal/métodos , Animais , Embrião de Mamíferos/embriologia , Microscopia de Fluorescência/métodos
11.
Clin Case Rep ; 7(11): 2135-2139, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788265

RESUMO

Autoimmune hepatitis is an infrequent but significant side effect of infliximab treatment. Diagnosis of autoimmune hepatitis is based on clinical, laboratory, and histological findings. Initial treatment involves cessation of infliximab and trial of prednisone. We present a rare case of infliximab-induced autoimmune hepatitis leading to liver failure requiring transplantation.

12.
Curr Top Dev Biol ; 135: 35-89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155363

RESUMO

Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.


Assuntos
Células Germinativas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Fatores de Transcrição SOX/química , Fatores de Transcrição SOX/metabolismo
13.
Wellcome Open Res ; 4: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583280

RESUMO

Background: Potentially novel regulators of early human germline development have been identified recently, including SOX15 and SOX17, both of which show specific expression in human primordial germ cells. SOX17 is now known to be a critical specifier of human germ cell identity. There have been suggestions, as yet without evidence, that SOX15 might also play a prominent role. The early human germline is inaccessible for direct study, but an in vitro model of human primordial germ cell-like cell (hPGCLC) specification from human embryonic stem cells (hESCs) has been developed. This enables mechanistic study of human germ cell specification using genetic tools to manipulate the levels of SOX15 and SOX17 proteins to explore their roles in hPGCLC specification. Methods: SOX15 and SOX17 proteins were depleted during hPGCLC specification from hESCs using the auxin-inducible degron system, combined with a fluorescent reporter for tracking protein levels. Additionally, SOX15 protein was overexpressed using the ProteoTuner system. Protein-level expression changes were confirmed by immunofluorescence. The impact on hPGCLC specification efficiency was determined by flow cytometry at various time points. qPCR experiments were performed to determine some transcriptional effects of SOX15 perturbations. Results: We observed specific SOX15 expression in hPGCLCs by using immunofluorescence and flow cytometry analysis. Depletion of SOX15 had no significant effect on hPGCLC specification efficiency on day 4 after induction, but there was a significant and progressive decrease in hPGCLCs on days 6 and 8. By contrast, depletion of SOX17 completely abrogated hPGCLC specification. Furthermore, SOX15 overexpression resulted in a significant increase in hPGCLC fraction on day 8. qPCR analysis revealed a possible role for the germ cell and pluripotency regulator PRDM14 in compensating for changes to SOX15 protein levels. Conclusions: SOX17 is essential for hPGCLC specification, yet SOX15 is dispensable. However, SOX15 may have a role in maintaining germ cell identity.

14.
Bioinformatics ; 23(8): 998-1005, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308340

RESUMO

MOTIVATION: Microarray experiments have revolutionized the study of gene expression with their ability to generate large amounts of data. This article describes an alternative to existing approaches to clustering of gene expression profiles; the key idea is to cluster in stages using a hierarchy of distance measures. This method is motivated by the way in which the human mind sorts and so groups many items. The distance measures arise from the orthogonal breakup of Euclidean distance, giving us a set of independent measures of different attributes of the gene expression profile. Interpretation of these distances is closely related to the statistical design of the microarray experiment. This clustering method not only accommodates missing data but also leads to an associated imputation method. RESULTS: The performance of the clustering and imputation methods was tested on a simulated dataset, a yeast cell cycle dataset and a central nervous system development dataset. Based on the Rand and adjusted Rand indices, the clustering method is more consistent with the biological classification of the data than commonly used clustering methods. The imputation method, at varying levels of missingness, outperforms most imputation methods, based on root mean squared error (RMSE). AVAILABILITY: Code in R is available on request from the authors.


Assuntos
Algoritmos , Inteligência Artificial , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reconhecimento Automatizado de Padrão/métodos , Software , Interpretação Estatística de Dados , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Elife ; 72018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29745895

RESUMO

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Oócitos/fisiologia , Animais , Redes Reguladoras de Genes , Camundongos
16.
Elife ; 62017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29256862

RESUMO

Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células-Tronco Embrionárias Murinas/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Animais , Camadas Germinativas/embriologia , Camundongos
17.
Elife ; 5: e10042, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26780186

RESUMO

The rostrocaudal (head-to-tail) axis is supplied by populations of progenitors at the caudal end of the embryo. Despite recent advances characterising one of these populations, the neuromesodermal progenitors, their nature and relationship to other populations remains unclear. Here we show that neuromesodermal progenitors are a single Sox2(low)T(low) entity whose choice of neural or mesodermal fate is dictated by their position in the progenitor region. The choice of mesoderm fate is Wnt/ß-catenin dependent. Wnt/ß-catenin signalling is also required for a previously unrecognised phase of progenitor expansion during mid-trunk formation. Lateral/ventral mesoderm progenitors represent a distinct committed state that is unable to differentiate to neural fates, even upon overexpression of the neural transcription factor Sox2. They do not require Wnt/ß-catenin signalling for mesoderm differentiation. This information aids the correct interpretation of in vivo genetic studies and the development of in vitro protocols for generating physiologically-relevant cell populations of clinical interest.


Assuntos
Diferenciação Celular , Desenvolvimento Embrionário , Linha Primitiva , Células-Tronco/fisiologia , Animais , Padronização Corporal , Mesoderma , Camundongos , Via de Sinalização Wnt
18.
Arterioscler Thromb Vasc Biol ; 24(10): 1783-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15271789

RESUMO

OBJECTIVE: Leukotriene B4 (LTB4), a product of the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism, has been implicated in atherosclerosis. However, the molecular mechanisms for the atherogenic effect of LTB4 are not well understood. This study is to determine candidate mechanisms. METHOD AND RESULTS: Primary human monocytes were treated with LTB4 and the supernatant was analyzed for cytokine/chemokine production by an immuno-protein array. This analysis revealed a strong increase of the monocyte chemoattractant protein-1 (MCP-1), a proinflammatory cytokine. Follow-up analyses with MCP-1 enzyme-linked immunosorbent assay (for quantitation of MCP-1 protein) and real-time polymerase chain reaction (PCR) (for MCP-1 mRNA) demonstrated that LTB4 strongly induced expression of MCP-1 protein and mRNA in a time-dependent and dose-dependent fashion. This induction was effectively abolished by CP-105,696, an antagonist for the LTB4 receptor BLT1. Selective inhibitors of ERK1/2 or JNK MAPK effectively blocked the LTB4-induced MCP-1 production. Furthermore, LTB4 increased NF-[kappa]B DNA binding activity, which was blocked by CP-105,696. CONCLUSIONS: LTB4 strongly induces MCP-1 production in primary human monocytes. This induction is mediated through the BLT1 pathway increasing MCP-1 transcription. Activation of ERK1/2 or JNK MAPK is essential for this induction. The NF-[kappa]B activation may be involved in LTB4-increased MCP-1 expression. The LTB4-induced MCP-1 in human monocytes may play a critical role in the atherogenicity of LTB4.


Assuntos
Quimiocina CCL2/biossíntese , Leucotrieno B4/farmacologia , Monócitos/efeitos dos fármacos , Benzopiranos/farmacologia , Ácidos Carboxílicos/farmacologia , Células Cultivadas , Quimiocina CCL2/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Monócitos/enzimologia , NF-kappa B/metabolismo , Receptores do Leucotrieno B4/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos
20.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005524

RESUMO

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA