Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(7): 5460-5480, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504262

RESUMO

METTL16, a human m6A RNA methyltransferase, is currently known for its modification of U6 and MAT2A RNAs. Several studies have identified additional RNAs to which METTL16 binds, however whether METTL16 modifies these RNAs is still in question. Moreover, a recent study determined that METTL16 contains more than one RNA-binding domain, leaving the importance of each individual RNA-binding domain unknown. Here we examined the effects of mutating the METTL16 protein in certain domains on overall cell processes. We chose to mutate the N-terminal RNA-binding domain, the methyltransferase domain, and the C-terminal RNA-binding domain. With these mutants, we identified changes in RNA-binding ability, protein and RNA expression, cell cycle phase occupancy, and proliferation. From the resulting changes in RNA and protein expression, we saw effects on cell cycle, metabolism, intracellular transport, and RNA processing pathways, which varied between the METTL16 mutant lines. We also saw significant effects on the G1 and S phase occupancy times and proliferative ability with some but not all the mutants. We have therefore concluded that while METTL16 may or may not m6A-modify all RNAs it binds, its binding (or lack of) has a significant outcome on a variety of cell processes.

2.
Breastfeed Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900678

RESUMO

Purpose: The World Health Organization's International Agency on Research for Cancer has determined that glyphosate is "probably carcinogenic to humans." There is a great public interest to investigate whether glyphosate are detected in breast milk. Thus, the goal of this study was to assess the concentration of glyphosate and its main metabolite in breast milk. Materials and Methods: Liquid chromatography was performed at 25°C using a Luna NH2, 50 × 2 mm, 3⎛ m (Phenomenex) analytical column. Electrospray ionization mass spectrometry was collected using negative ionization mode. The calibration curve for glyphosate ranged from 10 to 250 ng/mL. The detection limit was 1 ng/mL. Results: Breast milk samples were collected from 74 women, which included vegans (n = 26), vegetarians (n = 22), and nonvegetarians (n = 26). One of the 74 milk samples contained a detectable concentration of glyphosate and an additional 7 were found to contain aminomethylphosphonic acid. Conclusions: In breast milk samples collected mainly from women residing in urban regions of the United States, glyphosate detection was rare. Consistently, breastfed infants have a low or minimal risk of being exposed to glyphosate through ingestion of mother's milk. It is possible that the presence/absence and/or level of concentration of milk glyphosate depend on a place of residency and time of breastfeeding vis-à-vis time of its agricultural application.

3.
Front Oncol ; 12: 919880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756609

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5') pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics.

4.
Sci Rep ; 10(1): 17599, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077793

RESUMO

Human disease pathophysiology commonly involves metabolic disruption at both the cellular and subcellular levels. Isolated mitochondria are a powerful model for separating global cellular changes from intrinsic mitochondrial alterations. However, common laboratory practices for isolating mitochondria (e.g., differential centrifugation) routinely results in organelle preparations with variable mitochondrial purity. To overcome this issue, we developed a mass spectrometry-based method that quantitatively evaluates sample-specific percent mitochondrial enrichment. Sample-specific mitochondrial enrichment was then used to correct various biochemical readouts of mitochondrial function to a 'fixed' amount of mitochondrial protein, thus allowing for intrinsic mitochondrial bioenergetics, relative to the underlying proteome, to be assessed across multiple mouse tissues (e.g., heart, brown adipose, kidney, liver). Our results support the use of mitochondrial-targeted nLC-MS/MS as a method to quantitate mitochondrial enrichment on a per-sample basis, allowing for unbiased comparison of functional parameters between populations of mitochondria isolated from metabolically distinct tissues. This method can easily be applied across multiple experimental settings in which intrinsic shifts in the mitochondrial network are suspected of driving a given physiological or pathophysiological outcome.


Assuntos
Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Espectrometria de Massas , Camundongos , Consumo de Oxigênio/fisiologia , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA