Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Membr Biol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967800

RESUMO

The human neuronal nicotinic acetylcholine receptor α7 (nAChR) is an important target implicated in diseases like Alzheimer's or Parkinson's, as well as a validated target for drug discovery. For α7 nAChR model systems, correct folding and ion influx functions are essential. Two chaperones, resistance to inhibitors of cholinesterase 3 (RIC3) and novel nAChR regulator (NACHO), enhance the assembly and function of α7 nAChR. This study investigates the consequence of NACHO absence on α7 nAChR expression and function. Therefore, the sequences of human α7 nAChR and human RIC3 were transduced in Chinese hamster ovary (CHO) cells. Protein expression and function of α7 nAChR were confirmed by Western blot and voltage clamp, respectively. Cellular viability was assessed by cell proliferation and lactate dehydrogenase assays. Intracellular and extracellular expression were determined by in/on-cell Western, compared with another nAChR subtype by novel cluster fluorescence-linked immunosorbent assay, and N-glycosylation efficiency was assessed by glycosylation digest. The transgene CHO cell line showed expected protein expression and function for α7 nAChR and cell viability was barely influenced by overexpression. While intracellular levels of α7 nAChR were as anticipated, plasma membrane insertion was low. The glycosylation digest revealed no appreciable N-glycosylation product. This study demonstrates a stable and functional cell line expressing α7 nAChR, whose protein expression, function, and viability are not affected by the absence of NACHO. The reduced plasma membrane insertion of α7 nAChR, combined with incorrect matured N-glycosylation at the Golgi apparatus, suggests a loss of recognition signal for lectin sorting.

2.
Anal Biochem ; 692: 115568, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750681

RESUMO

Malodorants are mixtures containing mercaptans, which trigger the flight instinct upon exposure and might thus be deployed in military and civilian defense scenarios. Exposure to mercaptans might lead to unconsciousness, thus representing a possible threat for health. Therefore, we developed and validated a bioanalytical procedure for the simultaneous detection and identification of corresponding biomarkers for the verification of exposure to mercaptans. Disulfide-adducts of ethyl mercaptan (SEt), n-butyl mercaptan (SnBu), tert-butyl mercaptan (StBu) and iso-amyl mercaptan (SiAm) with cysteine (Cys) residues in human serum albumin (HSA) were formed by in vitro incubation of human plasma. After pronase-catalyzed proteolysis, reaction products were identified as adducts of the single amino acid Cys and the dipeptide cysteine-proline (Cys34Pro) detected by a sensitive µLC-ESI MS/MS method working in the scheduled multiple reaction monitoring (sMRM) mode. Dose-response studies showed linearity for the yield of Cys34Pro-adducts in the range from 6 nM to 300 µM of mercaptans in plasma and limits of identification (LOI) were in the range from 60 nM to 6 µM. Cys34-adducts showed stability for at least 6 days in plasma (37 °C). The presented disulfide-biomarkers expand the spectrum for bioanalytical verification procedures and might be helpful to prove exposure to malodorants.


Assuntos
Cisteína , Dissulfetos , Albumina Sérica Humana , Compostos de Sulfidrila , Humanos , Cisteína/química , Cisteína/sangue , Albumina Sérica Humana/química , Dissulfetos/química , Compostos de Sulfidrila/química , Espectrometria de Massas em Tandem/métodos , Odorantes/análise , Biomarcadores/sangue
3.
Mol Cell Biochem ; 479(7): 1627-1642, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38771378

RESUMO

Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Humanos , Animais , Mapas de Interação de Proteínas , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo
4.
Arch Toxicol ; 98(6): 1859-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555327

RESUMO

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Agentes Neurotóxicos , Compostos Organotiofosforados , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Relação Dose-Resposta a Droga , Células Cultivadas
5.
Biochemistry ; 62(4): 942-955, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752589

RESUMO

Neurotoxic organophosphorus compounds (OPs) pose a severe threat if misused in military conflicts or by terrorists. Administration of a hydrolytic enzyme that can decompose the circulating nerve agent into non-toxic metabolites in vivo offers a potential treatment. A promising candidate is the homo-dimeric phosphotriesterase originating from the bacterium Brevundimonas diminuta (BdPTE), which has been subject to several rational and combinatorial protein design studies. A series of engineered versions with much improved catalytic efficiencies toward medically relevant nerve agents was described, carrying up to 22 mutations per enzyme subunit. To provide a basis for further rational design, we have determined the crystal structure of the highly active variant 10-2-C3(C59V/C227V)─stabilized against oxidation by substitution of two unpaired Cys residues─in complex with a substrate analogue at 1.5 Å resolution. Unexpectedly, the long loop segment (residues 253-276) that covers the active site shows a totally new conformation, with drastic structural deviations up to 19 Å, which was neither predicted in any of the preceding protein design studies nor seen in previous crystallographic analyses of less far evolved enzyme versions. Inspired by this structural insight, additional amino acid exchanges were introduced and their effects on protein stability as well as on the catalytic efficiency toward several neurotoxic OPs were investigated. Somewhat surprisingly, our results suggest that the presently available engineered version of BdPTE, in spite of its design on the basis of partly false structural assumptions, constitutes a fairly optimized enzyme for the detoxification of relevant OP nerve agents.


Assuntos
Agentes Neurotóxicos , Hidrolases de Triester Fosfórico , Hidrolases de Triester Fosfórico/metabolismo , Organofosfatos , Domínio Catalítico , Compostos Organofosforados/metabolismo
6.
Arch Toxicol ; 97(7): 1873-1885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264164

RESUMO

VX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.


Assuntos
Agentes Neurotóxicos , Animais , Ratos , Agentes Neurotóxicos/toxicidade , Agentes Neurotóxicos/química , Albumina Sérica Humana/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos Organofosforados , Dipeptídeos , Biomarcadores , Tirosina
7.
Chemistry ; 28(40): e202200678, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420233

RESUMO

Reactivators are vital for the treatment of organophosphorus nerve agent (OPNA) intoxication but new alternatives are needed due to their limited clinical applicability. The toxicity of OPNAs stems from covalent inhibition of the essential enzyme acetylcholinesterase (AChE), which reactivators relieve via a chemical reaction with the inactivated enzyme. Here, we present new strategies and tools for developing reactivators. We discover suitable inhibitor scaffolds by using an activity-independent competition assay to study non-covalent interactions with OPNA-AChEs and transform these inhibitors into broad-spectrum reactivators. Moreover, we identify determinants of reactivation efficiency by analysing reactivation and pre-reactivation kinetics together with structural data. Our results show that new OPNA reactivators can be discovered rationally by exploiting detailed knowledge of the reactivation mechanism of OPNA-inhibited AChE.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Acetilcolinesterase/química , Antídotos , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Compostos Organofosforados , Oximas/química
8.
Br J Clin Pharmacol ; 88(12): 5064-5069, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35023196

RESUMO

In poisoning with organophosphorus compounds (OP), patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic acetylcholinesterase (AChE) activity at the earliest is essential for timely termination of the cholinergic crisis. Only drug-induced reactivation allows fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP-inhibited AChE activity in poisoned patients, thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and butyrylcholinesterase activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Humanos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Oximas/uso terapêutico , Cloreto de Obidoxima/farmacologia , Cloreto de Obidoxima/uso terapêutico , Acetilcolinesterase , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase , Inibidores da Colinesterase
9.
Arch Toxicol ; 96(1): 321-334, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778934

RESUMO

Organophosphorus compound pesticides (OP) are widely used in pest control and might be misused for terrorist attacks. Although acetylcholinesterase (AChE) inhibition is the predominant toxic mechanism, OP may induce pneumonia and formation of lung edema after poisoning and during clinical treatment as life-threatening complication. To investigate the underlying mechanisms, rat precision-cut lung slices (PCLS) were exposed to the OP parathion, malathion and their biotransformation products paraoxon and malaoxon (100-2000 µmol/L). Airway response, metabolic activity, release of LDH, cytokine expression and oxidative stress response were analyzed. A concentration-dependent inhibition of airway relaxation was observed after exposure with the oxon but not with the thion-OP. In contrast, cytotoxic effects were observed for both forms in higher concentrations. Increased cytokine expression was observed after exposure to parathion and paraoxon (IL-6, GM-CSF, MIP-1α) and IL-6 expression was dependent on NFκB activation. Intracellular GSH levels were significantly reduced by all four tested OP but an increase in GSSG and HO-1 expression was predominantly observed after malaoxon exposure. Pretreatment with the antioxidant N-acetylcysteine reduced malaoxon but not paraoxon-induced cytotoxicity. PCLS as a 3D lung model system revealed OP-induced effects depending on the particular OP. The experimental data of this study contribute to a better understanding of OP toxicity on cellular targets and may be a possible explanation for the variety of clinical outcomes induced by different OP.


Assuntos
Praguicidas , Acetilcolinesterase , Animais , Antioxidantes/farmacologia , Pulmão , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Ratos
10.
Arch Toxicol ; 96(2): 571-583, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34962578

RESUMO

The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M-1 min-1) towards VX and a preferential hydrolysis of the more toxic P(-) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg-1 i.v.: PTE-2 dosed at 1.3 mg kg-1 i.v. (PTE-2.1) and 2.6 mg kg-1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg-1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.


Assuntos
Substâncias para a Guerra Química/toxicidade , Compostos Organotiofosforados/toxicidade , Hidrolases de Triester Fosfórico/farmacologia , Animais , Caulobacteraceae/enzimologia , Inibidores da Colinesterase/toxicidade , Masculino , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Engenharia de Proteínas , Ratos , Ratos Wistar , Estereoisomerismo
11.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1023-L1035, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643087

RESUMO

Precision-cut lung slices (PCLS) are used as ex vivo model of the lung to fill the gap between in vitro and in vivo experiments. To allow optimal utilization of PCLS, possibilities to prolong slice viability via cold storage using optimized storage solutions were evaluated. Rat PCLS were cold stored in DMEM/F-12 or two different preservation solutions for up to 28 days at 4°C. After rewarming in DMEM/F-12, metabolic activity, live/dead staining, and mitochondrial membrane potential was assessed to analyze overall tissue viability. Single-cell suspensions were prepared and proportions of CD45+, EpCAM+, CD31+, and CD90+ cells were analyzed. As functional parameters, TNF-α expression was analyzed to detect inflammatory activity and bronchoconstriction was evaluated after acetylcholine stimulus. After 14 days of cold storage, viability and mitochondrial membrane potential were significantly better preserved after storage in solution 1 (potassium chloride rich) and solution 2 (potassium- and lactobionate-rich analog) compared with DMEM/F-12. Analysis of cell populations revealed efficient preservation of EpCAM+, CD31+, and CD90+ cells. Proportion of CD45+ cells decreased during cold storage but was better preserved by both modified solutions than by DMEM/F-12. PCLS stored in solution 1 responded substantially longer to inflammatory stimulation than those stored in DMEM/F-12 or solution 2. Analysis of bronchoconstriction revealed total loss of function after 14 days of storage in DMEM/F-12 but, in contrast, a good response in PCLS stored in the optimized solutions. An improved base solution with a high potassium chloride concentration optimizes cold storage of PCLS and allows shipment between laboratories and stockpiling of tissue samples.


Assuntos
Temperatura Baixa , Criopreservação/métodos , Pulmão/fisiologia , Potencial da Membrana Mitocondrial , Soluções para Preservação de Órgãos/química , Preservação de Tecido/métodos , Sobrevivência de Tecidos , Animais , Masculino , Ratos , Ratos Wistar
12.
Arch Toxicol ; 95(8): 2815-2823, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160649

RESUMO

Highly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M-1 min-1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC-MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(-) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(-) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


Assuntos
Caulobacteraceae/enzimologia , Agentes Neurotóxicos/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Catálise , Cromatografia Líquida , Hidrólise , Mutação , Agentes Neurotóxicos/química , Agentes Neurotóxicos/toxicidade , Hidrolases de Triester Fosfórico/genética , Estereoisomerismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
13.
Arch Toxicol ; 95(3): 985-1001, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33517499

RESUMO

To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antídotos/síntese química , Antídotos/química , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Relação Estrutura-Atividade
14.
Biochemistry ; 59(45): 4395-4406, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146522

RESUMO

We have adopted the concept of bispecific antibodies, which can simultaneously block or cross-link two different biomolecular targets, to create bispecific enzymes by exploiting the homodimeric quaternary structure of bacterial phosphotriesterases (PTEs). The PTEs from Brevundimonas diminuta and Agrobacterium radiobacter, whose engineered variants can efficiently hydrolyze organophosphorus (OP) nerve agents and pesticides, respectively, have attracted considerable interest for the treatment of the corresponding intoxications. OP nerve agents and pesticides still pose a severe toxicological threat in military conflicts, including acts of terrorism, as well as in agriculture, leading to >100000 deaths per year. In principle, engineered conventional homodimeric PTEs may provoke hydrolytic inactivation of individual OPs in vivo, and their application as catalytic bioscavengers via administration into the bloodstream has been proposed. However, their narrow substrate specificity would necessitate therapeutic application of a set or mixture of different enzymes, which complicates biopharmaceutical development. We succeeded in combining subunits from both enzymes and to stabilize their heterodimerization by rationally designing electrostatic steering mutations, thus breaking the natural C2 symmetry. The resulting bispecific enzyme from two PTEs with different bacterial origin exhibits an ultrabroad OP substrate profile and allows the efficient detoxification of both nerve agents and pesticides. Our approach of combining two active sites with distinct substrate specificities within one artificial dimeric biocatalyst-retaining the size and general properties of the original enzyme without utilizing protein mixtures or much larger fusion proteins-not only should facilitate biological drug development but also may be applicable to oligomeric enzymes with other catalytic activities.


Assuntos
Anticorpos Biespecíficos/imunologia , Organofosfatos/metabolismo , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Engenharia de Proteínas , Multimerização Proteica , Domínio Catalítico , Hidrolases de Triester Fosfórico/imunologia , Hidrolases de Triester Fosfórico/metabolismo , Estrutura Quaternária de Proteína , Eletricidade Estática
15.
Org Biomol Chem ; 18(27): 5218-5227, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32602497

RESUMO

The highly toxic nerve agent VX is a methylphosphonothioate that degrades via three pathways in aqueous solution, namely through the hydrolysis of the P-O or P-S bonds, or the cleavage of the C-S bond at the 2-aminoethyl residue. In the latter case, an aziridinium ion and a phosphonothioate is formed. Here it is shown that acyclic or cyclic cucurbiturils inhibit these reactions in phosphate buffer at physiological pH and thus stabilise the nerve agent. When using unbuffered basic solutions as the reaction medium, however, in which the P-S or P-O bonds are normally hydrolysed preferentially, cucurbiturils turned out to strongly shift VX degradation towards the cleavage of the C-S bond. Cucurbit[7]uril, in particular, has a so pronounced effect under suitable conditions that it almost completely suppresses the formation of products resulting from the other degradation pathways. Investigations involving VX analogues in combination with computational methods suggest that one reason for the reaction control exerted by the cucurbiturils is the preorganisation of VX for aziridinium ion formation. In addition, cucurbit[7]uril also lowers the transition state of the reaction by stabilising the positive charge developing on the way to the product. Cucurbiturils thus have a marked effect on the reactivity of a highly toxic nerve agent, which potentially allows using them for decontamination purposes.


Assuntos
Substâncias para a Guerra Química/química , Compostos Macrocíclicos/química , Compostos Organotiofosforados/química , Ciclização , Hidrólise , Cinética
16.
Arch Toxicol ; 94(7): 2275-2292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506210

RESUMO

Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.


Assuntos
Antídotos/uso terapêutico , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Agentes Neurotóxicos/intoxicação , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfonatos/efeitos adversos , Oximas/uso terapêutico , Praguicidas/intoxicação , Animais , Antídotos/efeitos adversos , Atropina/efeitos adversos , Reativadores da Colinesterase/efeitos adversos , Humanos , Intoxicação por Organofosfatos/diagnóstico , Intoxicação por Organofosfatos/fisiopatologia , Oximas/efeitos adversos , Resultado do Tratamento
17.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121487

RESUMO

Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from Saccharolobus solfataricus. The new mutant, V82L/C258L/I261F/W263A (4Mut) exhibited catalytic efficiency of 1.6 × 105 M-1 s-1 against paraoxon hydrolysis at 70°C, which is more than 3.5-fold and 42-fold improved in comparison with C258L/I261F/W263A (3Mut) and wild type SsoPox, respectively. 4Mut was also tested with chemical warfare nerve agents including tabun, sarin, soman, cyclosarin and VX. In particular, 4Mut showed about 10-fold enhancement in the hydrolysis of tabun and soman with respect to 3Mut. The crystal structure of 4Mut has been solved at the resolution of 2.8 Å. We propose that, reorganization of dimer conformation that led to increased central groove volume and dimer flexibility could be the major determinant for the improvement in hydrolytic activity in the 4Mut.


Assuntos
Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Proteínas Mutantes/metabolismo , Multimerização Proteica , Sulfolobus solfataricus/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Dicroísmo Circular , Evolução Molecular Direcionada , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Íons , Metais/química , Modelos Moleculares , Agentes Neurotóxicos/química , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Temperatura
18.
Molecules ; 25(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630769

RESUMO

The implementation of the Chemical Weapons Convention (CWC) in 1997 was a milestone in the prohibition of chemical warfare agents (CWA). Yet, the repeated use of CWA underlines the ongoing threat to the population. Organophosphorus (OP) nerve agents still represent the most toxic CWA subgroup. Defensive research on nerve agents is mainly focused on the "classical five", namely tabun, sarin, soman, cyclosarin and VX, although Schedule 1 of the CWC covers an unforeseeable number of homologues. Likewise, an uncounted number of OP pesticides have been produced in previous decades. Our aim was to determine the in vitro inhibition kinetics of selected organophosphono- and organophosphorothioates with human AChE, as well as hydrolysis of the agents in human plasma and reactivation of inhibited AChE, in order to derive potential structure-activity relationships. The investigation of the interactions of selected OP compounds belonging to schedule 1 (V-agents) and schedule 2 (amiton) of the CWC with human AChE revealed distinct structural effects of the P-alkyl, P-O-alkyl and N,N-dialkyl residues on the inhibitory potency of the agents. Irrespective of structural modifications, all tested V-agents presented as highly potent AChE inhibitors. The high stability of the tested agents in human plasma will most likely result in long-lasting poisoning in vivo, having relevant consequences for the treatment regimen. In conclusion, the results of this study emphasize the need to investigate the biological effects of nerve agent analogues in order to assess the efficacy of available medical countermeasures.


Assuntos
Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Compostos Organotiofosforados/química , Compostos Organotiofosforados/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/sangue , Inibidores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Estabilidade de Medicamentos , Humanos , Agentes Neurotóxicos/química , Agentes Neurotóxicos/farmacologia , Cloreto de Obidoxima/química , Cloreto de Obidoxima/farmacologia , Compostos Organotiofosforados/sangue , Compostos Organotiofosforados/farmacocinética , Relação Estrutura-Atividade
19.
Arch Toxicol ; 93(7): 1881-1891, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069408

RESUMO

We present the forensic analyses of plasma samples of human victims exposed to sulfur mustard (SM) in a crisis region in the Middle East in 2015. A few hours after exposure, poisoned persons showed typical signs and symptoms of percutaneous SM exposure including erythema and later on blisters and hardly healing skin wounds. Blood samples were collected 15 days after poisoning to be analyzed for the presence of long-lived protein-adduct biomarkers to verify SM poisoning. We applied a novel bioanalytical toolbox targeting four human serum albumin-derived biomarkers that were made accessible after plasma proteolysis. These adducts contained the SM-specific hydroxyethylthioethyl moiety either bound to the thiol group of a cysteine residue (C34*) or to the side-chain carboxylic group of a glutamic acid residue (E230*). Peptide biomarkers were produced from plasma of the victims using proteinase K (C34*PF), pronase (C34*P) and pepsin (AE230*VSKL and LQQC34*PFEDHVKL) for enzymatic protein cleavage. Separation and detection were carried out by selective micro-liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS). In addition to this site-specific adduct detection, a general approach after alkaline hydrolysis of the plasma protein fraction was applied. Liberated thiodiglycol (TDG) was derivatized with heptafluorobutyric anhydride and detected by gas chromatography-electron ionization mass spectrometry (GC-EI MS). The different bioanalytical methods yielded congruent results confirming SM poisoning for all patients who showed clinical signs and symptoms. This is the first time that real cases of SM poisoning were confirmed and presented by such a broad compilation of protein-derived biomarkers.


Assuntos
Substâncias para a Guerra Química/intoxicação , Toxicologia Forense/métodos , Gás de Mostarda/intoxicação , Albumina Sérica Humana/química , Biomarcadores/sangue , Substâncias para a Guerra Química/química , Humanos , Gás de Mostarda/química , Intoxicação/sangue , Ligação Proteica , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
20.
Proc Natl Acad Sci U S A ; 113(20): 5514-9, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140636

RESUMO

Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.


Assuntos
Acetilcolinesterase/química , Antídotos/química , Reativadores da Colinesterase/química , Agentes Neurotóxicos/química , Oximas/química , Compostos de Piridínio/química , Sarina/química , Cristalografia por Raios X , Cinética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA