Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186866

RESUMO

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Assuntos
Manose , Manosiltransferases , Animais , Glicosilação , Mamíferos/metabolismo , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
2.
J Biol Chem ; 299(6): 104740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088134

RESUMO

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterized a pair of nanobodies that are specific for mouse Plexin-B1 and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signaling and provides a potential innovative route for therapeutic modulation of Plexin-B1.


Assuntos
Moléculas de Adesão Celular , Semaforinas , Anticorpos de Domínio Único , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/metabolismo
3.
J Biol Chem ; 298(9): 102265, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850304

RESUMO

Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor-ligand interaction by an anti-Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti-Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti-Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.


Assuntos
Anticorpos Monoclonais , Antígenos CD , Esclerose Múltipla , Proteínas do Tecido Nervoso , Osteoporose Pós-Menopausa , Receptores de Superfície Celular , Semaforinas , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ligantes , Camundongos , Esclerose Múltipla/terapia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Osteoporose Pós-Menopausa/terapia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Semaforinas/antagonistas & inibidores , Semaforinas/metabolismo
4.
Mol Psychiatry ; 26(4): 1376-1398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444474

RESUMO

Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.


Assuntos
Medo , Memória , Proteínas do Tecido Nervoso , Semaforinas , Animais , Moléculas de Adesão Celular , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios , Semaforinas/genética
5.
Mol Cell Proteomics ; 17(2): 270-289, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29141914

RESUMO

Ovarian cancer is characterized by early transcoelomic metastatic spread via the peritoneal fluid, where tumor cell spheroids (TU), tumor-associated T cells (TAT), and macrophages (TAM) create a unique microenvironment promoting cancer progression, chemoresistance, and immunosuppression. However, the underlying signaling mechanisms remain largely obscure. To chart these signaling networks, we performed comprehensive proteomic and transcriptomic analyses of TU, TAT, and TAM from ascites of ovarian cancer patients. We identify multiple intercellular signaling pathways driven by protein or lipid mediators that are associated with clinical outcome. Beyond cytokines, chemokines and growth factors, these include proteins of the extracellular matrix, immune checkpoint regulators, complement factors, and a prominent network of axon guidance molecules of the ephrin, semaphorin, and slit families. Intriguingly, both TU and TAM from patients with a predicted short survival selectively produce mediators supporting prometastatic events, including matrix remodeling, stemness, invasion, angiogenesis, and immunosuppression, whereas TAM associated with a longer survival express cytokines linked to effector T-cell chemoattraction and activation. In summary, our study uncovers previously unrecognized signaling networks in the ovarian cancer microenvironment that are of potential clinical relevance.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteômica , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 111(6): 2194-9, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469813

RESUMO

Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética , Animais , Camundongos , Camundongos Transgênicos
7.
Clin Transl Med ; 14(4): e1604, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38566518

RESUMO

BACKGROUND: IL-17A and TNF synergistically promote inflammation and tumorigenesis. Their interplay and impact on ovarian carcinoma (OC) progression are, however, poorly understood. We addressed this question focusing on mesothelial cells, whose interaction with tumor cells is known to play a pivotal role in transcoelomic metastasis formation. METHODS: Flow-cytometry and immunohistochemistry experiments were employed to identify cellular sources of IL-17A and TNF. Changes in transcriptomes and secretomes were determined by bulk and single cell RNA sequencing as well as affinity proteomics. Functional consequences were investigated by microscopic analyses and tumor cell adhesion assays. Potential clinical implications were assessed by immunohistochemistry and survival analyses. RESULTS: We identified Th17 cells as the main population of IL-17A- and TNF producers in ascites and detected their accumulation in early omental metastases. Both IL-17A and its receptor subunit IL-17RC were associated with short survival of OC patients, pointing to a role in clinical progression. IL-17A and TNF synergistically induced the reprogramming of mesothelial cells towards a pro-inflammatory mesenchymal phenotype, concomitantly with a loss of tight junctions and an impairment of mesothelial monolayer integrity, thereby promoting cancer cell adhesion. IL-17A and TNF synergistically induced the Th17-promoting cytokines IL-6 and IL-1ß as well as the Th17-attracting chemokine CCL20 in mesothelial cells, indicating a reciprocal crosstalk that potentiates the tumor-promoting role of Th17 cells in OC. CONCLUSIONS: Our findings reveal a novel function for Th17 cells in the OC microenvironment, which entails the IL-17A/TNF-mediated induction of mesothelial-mesenchymal transition, disruption of mesothelial layer integrity and consequently promotion of OC cell adhesion. These effects are potentiated by a positive feedback loop between mesothelial and Th17 cells. Together with the observed clinical associations and accumulation of Th17 cells in omental micrometastases, our observations point to a potential role in early metastases formation and thus to new therapeutic options.


Assuntos
Neoplasias Ovarianas , Células Th17 , Humanos , Feminino , Interleucina-17/metabolismo , Citocinas/metabolismo , Neoplasias Ovarianas/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
8.
Cancer Res Commun ; 3(3): 444-458, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36936664

RESUMO

Metastatic prostate cancer is essentially incurable and is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We show here that prostate epithelial cell-specific expression of a mutant form of Plexin-B1 (P1597L) which was identified in metastatic deposits in patients with prostate cancer, significantly increases metastasis, in particular metastasis to distant sites, in two transgenic mouse models of prostate cancer (PbCre+Ptenfl /flKrasG12V and PbCre+Ptenfl /flp53fl/ fl ). In contrast, prostate epithelial cell-specific expression of wild-type (WT) Plexin-B1 in PbCre+Ptenfl /flKrasG12V mice significantly decreases metastasis, showing that a single clinically relevant Pro1597Leu amino-acid change converts Plexin-B1 from a metastasis-suppressor to a metastasis-promoter. Furthermore, PLXNB1P1597L significantly increased invasion of tumor cells into the prostate stroma, while PLXNB1WT reduced invasion, suggesting that Plexin-B1 has a role in the initial stages of metastasis. Deletion of RhoA/C or PDZRhoGEF in Ptenfl /flKrasG12VPLXNB1P1597L mice suppressed metastasis, implicating the Rho/ROCK pathway in this phenotypic switch. Germline deletion of Plexin-B1, to model anti-Plexin-B1 therapy, significantly decreased invasion and metastasis in both models. Our results demonstrate that Plexin-B1 plays a complex yet significant role in metastasis in mouse models of prostate cancer and is a potential therapeutic target to block the lethal spread of the disease. Significance: Few therapeutic targets have been identified specifically for preventing locally invasive/oligometastatic prostate cancer from becoming more widely disseminated. Our findings suggest Plexin-B1 signaling, particularly from the clinically relevant P1597L mutant, is such a target.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Neoplasias da Próstata/genética , Camundongos Transgênicos
9.
Front Immunol ; 14: 1203776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415985

RESUMO

Introduction: We here thought to dissect the inflammatory signature in lesions of three skin disorders, which show a common adaptive immune response against autoantigens of the skin but are characterized by diverging clinical phenotypes. Pemphigus vulgaris (PV) and bullous pemphigoid (BP) are type-2-dependent, IgG autoantibody-driven blistering disorders of mucous membranes and skin, which target desmoglein (Dsg)3 and bullous pemphigoid (BP)180, respectively. In contrast, lichen planus (LP) is a common chronic inflammatory disease of the skin and mucous membranes with a pronounced dermal T cell infiltrate. We previously identified peripheral type 1 and 17 T cell responses against Dsg3 and BP180 in a cohort of LP patients strongly suggesting that the underlying inflammatory T cell signature may drive the evolving phenotype. Methods: Paraffin-embedded skin biopsies from well-characterized patients with LP (n=31), BP (n=19), PV (n=9), and pemphigus foliaceus (PF) (n=2) were analysed. Areas with the most prominent inflammatory infiltrate were excised with punch biopsies and tissue microarrays (TMA) containing multiple biopsies were created. Using multicolor immunofluorescence, the inflammatory infiltrate was stained with antibodies against multiple cellular markers, i. e. CD3ϵ, CD4, CD15, TCR-δ, the cytokine IL-17A, and the transcription factors, T-bet and GATA-3. Results: In LP, there was a higher number of CD4+ T cells expressing T-bet compared to GATA-3. In contrast, CD4+ T cells in PV and BP skin lesions more frequently expressed GATA-3 than T-bet. IL-17A+ cells and IL-17A+ T cells were found to a similar extent in all the three disorders. IL-17A+ granulocytes were more predominant in BP than in LP or PV. Of note, the majority of IL-17A+ cells in LP were neither T cells nor granulocytes. Discussion: Our findings in inflammatory skin infiltrates clearly show a predominant type 1 signature in LP in contrast to a preponderance of type 2 T cells in PV and BP. In contrast to LP, granulocytes and to a much lesser extent CD3+ T cells were a cellular source of IL-17A in BP and PV. These data strongly suggest that different inflammatory cell signatures drive evolving clinically diverse phenotypes of LP, PV and BP despite common target antigens of the skin.


Assuntos
Líquen Plano , Penfigoide Bolhoso , Pênfigo , Humanos , Interleucina-17 , Autoanticorpos , Linfócitos T CD4-Positivos/patologia
10.
iScience ; 26(12): 108401, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047087

RESUMO

A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.

11.
Sci Transl Med ; 14(654): eabf1922, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857828

RESUMO

Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.


Assuntos
Úlcera Péptica , Semaforinas , Animais , Moléculas de Adesão Celular , Proteínas Ativadoras de GTPase , Gastrinas/efeitos adversos , Gastrinas/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso , Úlcera Péptica/induzido quimicamente , Transdução de Sinais
12.
Exp Cell Res ; 316(15): 2477-86, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20478304

RESUMO

Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair.


Assuntos
Vasos Sanguíneos/metabolismo , Sistema Endócrino/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Semaforinas/fisiologia , Animais , Vasos Sanguíneos/embriologia , Embrião de Mamíferos , Sistema Endócrino/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Ligantes , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
13.
Front Cell Dev Biol ; 9: 635723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614664

RESUMO

Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.

14.
Nat Commun ; 12(1): 1308, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637728

RESUMO

The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.


Assuntos
Moléculas de Adesão Celular/metabolismo , Divisão Celular/fisiologia , Células Epidérmicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Células-Tronco/metabolismo , Animais , Carcinoma Basocelular/patologia , Proteínas de Transporte/metabolismo , Adesão Celular , Proliferação de Células , Desenvolvimento Embrionário/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Junções Intercelulares , Queratinócitos , Camundongos , Mitose , Morfogênese , Organogênese
15.
Mol Cell Neurosci ; 42(4): 372-81, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19699796

RESUMO

Semaphorins and their receptors, plexins, have emerged as important regulators of a multitude of biological processes. Plexin-B3 has been shown to be selectively expressed in postnatal oligodendrocytes. In contrast to the well-characterized Plexin-A family and the Plexin-B family members Plexin-B1 and -B2, no data are available on the functional role of Plexin-B3 in the central nervous system in vivo. Here we have elucidated the functional significance of Plexin-B3 by generating and analyzing constitutive knock-out mice. Plexin-B3-deficient mice were found to be viable and fertile. A systematic histological analysis revealed no morphological defects in the brain or spinal cord of mutant animals. In detailed behavioural analyses of locomotor activity, motor coordination, motor learning, and anxiety levels Plexin-B3-deficient mice were indistinguishable from wild-type controls. Thus we conclude that under physiological conditions Plexin-B3 is not essential for the development and function of the central nervous system.


Assuntos
Comportamento Animal/fisiologia , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores Etários , Animais , Ansiedade , Biomarcadores/metabolismo , Células Cultivadas , Sistema Nervoso Central/anatomia & histologia , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Testes Neuropsicológicos , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Receptores de Superfície Celular/genética , Medula Espinal/anatomia & histologia , Medula Espinal/metabolismo
16.
Trends Pharmacol Sci ; 29(11): 582-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18814923

RESUMO

The human genome encodes hundreds of G-protein-coupled receptors. Their intracellular effects, however, are mediated by only four families of heterotrimeric G proteins: G(s), G(i)/G(o), G(q)/G(11) and G(12)/G(13). Progress in the knowledge about the G(12)/G(13) family has somewhat lagged behind because their downstream effectors remained unknown for several years, and tools to specifically interfere with G(12)/G(13)-mediated signalling were, therefore, missing. However, with the identification of G(12)/G(13)-regulated signalling pathways and the recent application of new techniques, such as conditional gene inactivation, RNA interference or expression of inhibitory proteins, new insights into the in vivo functions of this G-protein family have been gained. It has become clear that this pathway regulates cellular proliferation, movement and morphology in many different organs and that it is centrally involved in various diseases including cancer and cardiovascular disorders. Here, we focus on recent progress made in the analyses of the in vivo functions of mammalian G(12)/G(13)-mediated signalling.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Transdução de Sinais/fisiologia , Animais , Doença/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neoplasias/genética , Neoplasias/fisiopatologia , Ativação Plaquetária/efeitos dos fármacos , Transdução de Sinais/genética
17.
Eur J Neurosci ; 30(7): 1193-208, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19788569

RESUMO

Semaphorins and their receptors, plexins, have emerged as key regulators of various aspects of neuronal development. In contrast to the Plexin-A family, the cellular functions of Plexin-B family proteins in developing neurons are only poorly understood. An activation of Plexin-B1 via its ligand, semaphorin 4D (Sema4D), produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth. However, the functional role of Sema4D-Plexin-B interactions over subsequent stages of neurite development, differentiation and maturation has not been characterized. Here we addressed this question using morphogenetic assays and time-lapse imaging on developing rat hippocampal neurons as a model system. Interestingly, Sema4D treatment over several hours was observed to promote branching and complexity in hippocampal neurons via the activation of Plexin-B1. The activation of receptor tyrosine kinases and the Rho kinase following Sema4D treatment was found to control dendritic and axonal morphogenesis by differentially regulating branching and extension. Phosphoinositide-3-kinase, but not extracellular signal-regulated kinase 1/2, was observed to be important for the stimulatory effects of Sema4D on dendritic branching. Furthermore, we observed that the mammalian target of rapamycin is activated downstream of Plexin-B1 and contributes to Sema4D-induced effects on dendritic branching. In contrast, glycogen synthase kinase-3 beta, another effector of phosphoinositide-3-kinase signalling, was not involved. Thus, our results show that Sema4D-Plexin-B interactions modulate dendritic and axonal arborizations of developing neurons by co-ordinated and concerted activation of diverse signalling pathways.


Assuntos
Antígenos CD/metabolismo , Axônios/fisiologia , Dendritos/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais
18.
Theranostics ; 9(22): 6601-6617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588238

RESUMO

The peritoneal fluid (ascites), replete with abundant tumor-promoting factors and extracellular vesicles (EVs) reflecting the tumor secretome, plays an essential role in ovarian high-grade serous carcinoma (HGSC) metastasis and immune suppression. A comprehensive picture of mediators impacting HGSC progression is, however, not available. Methods: Proteins in ascites from HGSC patients were quantified by the aptamer-based SOMAscan affinity proteomic platform. SOMAscan data were analyzed by bioinformatic methods to reveal clinically relevant links and functional connections, and were validated using the antibody-based proximity extension assay (PEA) Olink platform. Mass spectrometry was used to identify proteins in extracellular microvesicles released by HGSC cells. Results: Consistent with the clinical features of HGSC, 779 proteins in ascites identified by SOMAscan clustered into groups associated either with metastasis and a short relapse-free survival (RFS), or with immune regulation and a favorable RFS. In total, 346 proteins were linked to OC recurrence in either direction. Reanalysis of 214 of these proteins by PEA revealed an excellent median Spearman inter-platform correlation of ρ=0.82 for the 46 positively RFS-associated proteins in both datasets. Intriguingly, many proteins strongly associated with clinical outcome were constituents of extracellular vesicles. These include proteins either linked to a poor RFS, such as HSPA1A, BCAM and DKK1, or associated with a favorable outcome, such as the protein kinase LCK. Finally, based on these data we defined two protein signatures that clearly classify short-term and long-term relapse-free survivors. Conclusion: The ascites secretome points to metastasis-promoting events and an anti-tumor response as the major determinants of the clinical outcome of HGSC. Relevant proteins include both bone fide secreted and vesicle-encapsulated polypeptides, many of which have previously not been linked to HGSC recurrence. Besides a deeper understanding of the HGSC microenvironment our data provide novel potential tools for HGSC patient stratification. Furthermore, the first large-scale inter-platform validation of SOMAscan and PEA will be invaluable for other studies using these affinity proteomics platforms.


Assuntos
Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Proteômica/métodos , Microambiente Tumoral , Ascite/metabolismo , Ascite/patologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Proteínas Sanguíneas/análise , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidade , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Recidiva
19.
Front Oncol ; 9: 1150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737572

RESUMO

A central reason behind the poor clinical outcome of patients with high-grade serous carcinoma (HGSC) of the ovary is the difficulty in reliably detecting early occurrence or recurrence of this malignancy. Biomarkers that provide reliable diagnosis of this disease are therefore urgently needed. Systematic proteomic methods that identify HGSC-associated molecules may provide such biomarkers. We applied the antibody-based proximity extension assay (PEA) platform (Olink) for the identification of proteins that are upregulated in the plasma of OC patients. Using binders targeting 368 different plasma proteins, we compared 20 plasma samples from HGSC patients (OC-plasma) with 20 plasma samples from individuals with non-malignant gynecologic disorders (N-plasma). We identified 176 proteins with significantly higher levels in OC-plasma compared to N-plasma by PEA (p < 0.05 by U-test; Benjamini-Hochberg corrected), which are mainly implicated in immune regulation and metastasis-associated processes, such as matrix remodeling, adhesion, migration and proliferation. A number of these proteins have not been reported in previous studies, such as BCAM, CDH6, DDR1, N2DL-2 (ULBP2), SPINT2, and WISP-1 (CCN4). Of these SPINT2, a protease inhibitor mainly derived from tumor cells within the HGSC microenvironment, showed the highest significance (p < 2 × 10-7) similar to the previously described IL-6 and PVRL4 (NECTIN4) proteins. Results were validated by means of the aptamer-based 1.3 k SOMAscan proteomic platform, which revealed a high inter-platform correlation with a median Spearman ρ of 0.62. Likewise, ELISA confirmed the PEA data for 10 out of 12 proteins analyzed, including SPINT2. These findings suggest that in contrast to other entities SPINT2 does not act as a tumor suppressor in HGSC. This is supported by data from the PRECOG and KM-Plotter meta-analysis databases, which point to a tumor-type-specific inverse association of SPINT2 gene expression with survival. Our data also demonstrate that both the PEA and SOMAscan affinity proteomics platforms bear considerable potential for the unbiased discovery of novel disease-associated biomarkers.

20.
Mol Oncol ; 13(2): 185-201, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30353652

RESUMO

The peritoneal fluid of ovarian carcinoma patients promotes cancer cell invasion and metastatic spread with lysophosphatidic acid (LPA) as a potentially crucial mediator. However, the origin of LPA in ascites and the clinical relevance of individual LPA species have not been addressed. Here, we show that the levels of multiple acyl-LPA species are strongly elevated in ascites versus plasma and are associated with short relapse-free survival. Data derived from transcriptome and secretome analyses of primary ascite-derived cells indicate that (a) the major route of LPA synthesis is the consecutive action of a secretory phospholipase A2 (PLA2 ) and autotaxin, (b) that the components of this pathway are coordinately upregulated in ascites, and (c) that CD163+CD206+ tumor-associated macrophages play an essential role as main producers of PLA2 G7 and autotaxin. The latter conclusion is consistent with mass spectrometry-based metabolomic analyses of conditioned medium from ascites cells, which showed that tumor-associated macrophages, but not tumor cells, are able to produce 20:4 acyl-LPA in lipid-free medium. Furthermore, our transcriptomic data revealed that LPA receptor (LPAR) genes are expressed in a clearly cell type-selective manner: While tumor cells express predominantly LPAR1-3, macrophages and T cells also express LPAR5 and LPAR6 at high levels, pointing to cell type-selective LPA signaling pathways. RNA profiling identified cytokines linked to cell motility and migration as the most conspicuous class of LPA-induced genes in macrophages, suggesting that LPA exerts protumorigenic properties at least in part via the tumor secretome.


Assuntos
Lisofosfolipídeos/biossíntese , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Microambiente Tumoral , Ascite/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Metaboloma , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Ovarianas/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Resultado do Tratamento , Microambiente Tumoral/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA