Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 137(5): 678-689, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538796

RESUMO

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Assuntos
Plaquetas/fisiologia , AMP Cíclico/fisiologia , Transtornos Hemorrágicos/genética , Hemostasia/fisiologia , Trombospondina 1/fisiologia , Animais , Tempo de Sangramento , Plaquetas/efeitos dos fármacos , Antígenos CD36/deficiência , Antígenos CD36/fisiologia , Células Cultivadas , Cloretos/toxicidade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Grânulos Citoplasmáticos/metabolismo , Epoprostenol/fisiologia , Compostos Férricos/toxicidade , Humanos , Iloprosta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Transfusão de Plaquetas , Sistemas do Segundo Mensageiro/fisiologia , Trombose/induzido quimicamente , Trombose/prevenção & controle , Trombospondina 1/deficiência , Trombospondina 1/farmacologia
2.
Haematologica ; 105(3): 808-819, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31289200

RESUMO

Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.


Assuntos
Plaquetas , Epoprostenol , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Humanos , Lipídeos , Camundongos , Ativação Plaquetária , Agregação Plaquetária
3.
Blood ; 125(17): 2693-703, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25710879

RESUMO

Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3',5'-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.


Assuntos
Plaquetas/citologia , Antígenos CD36/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Lipoproteínas LDL/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais , Animais , Plaquetas/metabolismo , GMP Cíclico/metabolismo , Humanos , Hiperlipidemias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , Fosforilação , Ativação Plaquetária , Espécies Reativas de Oxigênio/metabolismo
4.
Blood ; 122(20): 3533-45, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24100445

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombin-stimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr(853)), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1δ) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr(853) in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine(188) through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function.


Assuntos
Plaquetas/enzimologia , AMP Cíclico/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Alprostadil/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Técnicas In Vitro , Complexos Multiproteicos , Quinase de Cadeia Leve de Miosina/sangue , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas , Trombina/farmacologia
5.
Blood ; 122(4): 580-9, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23699602

RESUMO

Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. We show that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase-dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C γ2. Inhibition of Syk, Ca(2+) mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase-dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.


Assuntos
Plaquetas/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Proteínas Tirosina Quinases/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Plaquetas/citologia , Antígenos CD36/metabolismo , Antígenos CD36/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Forma Celular/efeitos dos fármacos , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
J Am Heart Assoc ; 3(1): e000706, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24584741

RESUMO

BACKGROUND: Atherothrombosis is associated with platelet hyperactivity. Hypertriglyceridemia and insulin resistance (IR) are features of polycystic ovary syndrome (PCOS). The effect of induced hypertriglyceridemia on IR and platelet function was examined in young women with PCOS. METHODS AND RESULTS: Following overnight fasting, 13 PCOS and 12 healthy women were infused with saline or 20% intralipid for 5 hours on separate days. Insulin sensitivity was measured using a hyperinsulinemic euglycaemic clamp in the final 2 hours of each infusion. Platelet responses to adenosine diphosphate (ADP) and prostacyclin (PGI2) were measured by flow cytometric analysis of platelet fibrinogen binding and P-selectin expression using whole blood taken during each infusion (at 2 hours) and at the end of each clamp. Lipid infusion increased triglycerides and reduced insulin sensitivity in both controls (median, interquartile range ) (5.25 [3.3, 6.48] versus 2.60 [0.88, 3.88] mg kg(-1) min(-1), P<0.001) and PCOS (3.15 [2.94, 3.85] versus 1.06 [0.72, 1.43] mg kg(-1) min(-1), P<0.001). Platelet activation by ADP was enhanced and ability to suppress platelet activation by PGI2 diminished during lipid infusion in both groups when compared to saline. Importantly, insulin infusion decreased lipid-induced platelet hyperactivity by decreasing their response to 1 µmol/L ADP (78.7% [67.9, 82.3] versus 62.8% [51.8, 73.3], P=0.02) and increasing sensitivity to 0.01 µmol/L PGI2 (67.6% [39.5, 83.8] versus 40.9% [23.8, 60.9], P=0.01) in controls, but not in PCOS. CONCLUSION: Acute hypertriglyceridemia induced IR, and increased platelet activation in both groups that was not reversed by insulin in PCOS subjects compared to controls. This suggests that platelet hyperactivity induced by acute hypertriglyceridemia and IR could contribute athero-thrombotic risk. CLINICAL TRIAL REGISTRATION URL: www.isrctn.org. Unique Identifier: ISRCTN42448814.


Assuntos
Plaquetas/metabolismo , Hiperinsulinismo/sangue , Hipertrigliceridemia/sangue , Resistência à Insulina , Ativação Plaquetária , Síndrome do Ovário Policístico/sangue , Doença Aguda , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Inglaterra , Ácidos Graxos não Esterificados/sangue , Feminino , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo/fisiopatologia , Testes de Função Plaquetária , Síndrome do Ovário Policístico/fisiopatologia , Fatores de Risco , Fatores de Tempo , Triglicerídeos/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA