RESUMO
The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Lactente , Humanos , Pré-Escolar , SARS-CoV-2/metabolismo , Multiômica , Citocinas/metabolismo , Interferon-alfa , Imunidade nas MucosasRESUMO
Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.
Assuntos
Anticorpos Monoclonais/imunologia , Influenza Humana/patologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Aves , Reações Cruzadas , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controleRESUMO
Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks.
Assuntos
Proteínas de Anfíbios/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Peptídeos/farmacologia , Sequência de Aminoácidos , Proteínas de Anfíbios/imunologia , Animais , Antivirais/imunologia , Antivirais/farmacologia , Cães , Relação Dose-Resposta a Droga , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Peptídeos/imunologia , Ranidae/metabolismo , Análise de Sobrevida , Resultado do Tratamento , Vírion/efeitos dos fármacos , Vírion/imunologia , Vírion/metabolismoRESUMO
The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.
Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes/genética , Epistasia Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza/genética , Hemaglutininas , Influenza Humana/genética , Influenza Humana/prevenção & controleRESUMO
Low plasma arginine bioavailability has been implicated in endothelial dysfunction and immune dysregulation. The role of arginine in COVID-19 is unknown, but could contribute to cellular damage if low. Our objective was to determine arginine bioavailability in adults and children with COVID-19 vs. healthy controls. We hypothesized that arginine bioavailability would be low in patients with COVID-19 and multisystem inflammatory syndrome in children (MIS-C). We conducted a prospective observational study of three patient cohorts; arginine bioavailability was determined in asymptomatic healthy controls, adults hospitalized with COVID-19, and hospitalized children/adolescents <21 y old with COVID-19, MIS-C, or asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection identified on admission screen. Mean patient plasma amino acids were compared to controls using the Student's t test. Arginine-to-ornithine ratio, a biomarker of arginase activity, and global arginine bioavailability ratio (GABR, arginine/[ornithine+citrulline]) were assessed in all three groups. A total of 80 patients were included (28 controls, 32 adults with COVID-19, and 20 pediatric patients with COVID-19/MIS-C). Mean plasma arginine and arginine bioavailability ratios were lower among adult and pediatric patients with COVID-19/MIS-C compared to controls. There was no difference between arginine bioavailability in children with COVID-19 vs. MIS-C. Adults and children with COVID-19 and MIS-C in our cohort had low arginine bioavailability compared to healthy adult controls. This may contribute to immune dysregulation and endothelial dysfunction in COVID-19. Low arginine-to-ornithine ratio in patients with COVID-19 or MIS-C suggests an elevation of arginase activity. Further study is merited to explore the role of arginine dysregulation in COVID-19.
Assuntos
Aminoácidos/sangue , COVID-19/sangue , Hospitalização , SARS-CoV-2/metabolismo , Adulto , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
Emerging variants, especially the recent Omicron variant, and gaps in vaccine coverage threaten mRNA vaccine mediated protection against SARS-CoV-2. While children have been relatively spared by the ongoing pandemic, increasing case numbers and hospitalizations are now evident among children. Thus, it is essential to better understand the magnitude and breadth of vaccine-induced immunity in children against circulating viral variant of concerns (VOCs). Here, we compared the magnitude and breadth of humoral immune responses in adolescents and adults 1 month after the two-dose Pfizer (BNT162b2) vaccination. We found that adolescents (aged 11 to 16) demonstrated more robust binding antibody and neutralization responses against the wild-type SARS-CoV-2 virus spike protein contained in the vaccine compared to adults (aged 27 to 55). The quality of the antibody responses against VOCs in adolescents were very similar to adults, with modest changes in binding and neutralization of Beta, Gamma, and Delta variants. In comparison, a significant reduction of binding titers and a striking lack of neutralization was observed against the newly emerging Omicron variant for both adolescents and adults. Overall, our data show that a two-dose BNT162b2 vaccine series may be insufficient to protect against the Omicron variant. IMPORTANCE While plasma binding and neutralizing antibody responses have been reported for cohorts of infected and vaccinated adults, much less is known about the vaccine-induced antibody responses to variants including Omicron in children. This illustrates the need to characterize vaccine efficacy in key vulnerable populations. A third (booster) dose of BNTb162b was approved for children 12 to 15 years of age by the Food and Drug Administration (FDA) on January 1, 2022, and pediatric clinical trials are under way to evaluate the safety, immunogenicity, and effectiveness of a third dose in younger children. Similarly, variant-specific booster doses and pan-coronavirus vaccines are areas of active research. Our data show adolescents mounted stronger humoral immune responses after vaccination than adults. It also highlights the need for future studies of antibody durability in adolescents and children as well as the need for future studies of booster vaccination and their efficacy against the Omicron variant.
Assuntos
Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Criança , Humanos , Imunização Secundária , SARS-CoV-2/classificação , SARS-CoV-2/imunologiaRESUMO
Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.
Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Orthomyxoviridae/imunologia , Imunidade Adaptativa/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Perfilação da Expressão Gênica , Testes de Inibição da Hemaglutinação , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estações do Ano , Biologia de Sistemas/métodos , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto JovemRESUMO
The factors that control the development of an effective immune response to the recently emerged SARS-CoV-2 virus are poorly understood. In this study, we provide a cross-sectional analysis of the dynamics of B cell responses to SARS-CoV-2 infection in hospitalized COVID-19 patients. We observe changes in B cell subsets consistent with a robust humoral immune response, including significant expansion of plasmablasts and activated receptor-binding domain (RBD)-specific memory B cell populations. We observe elevated titers of Abs to SARS-CoV-2 RBD, full-length Spike, and nucleoprotein over the course of infection, with higher levels of RBD-specific IgG correlating with increased serum neutralization. Depletion of RBD-specific Abs from serum removed a major portion of neutralizing activity in most individuals. Some donors did retain significant residual neutralization activity, suggesting a potential Ab subset targeting non-RBD epitopes. Taken together, these findings are instructive for future vaccine design and mAb strategies.
Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Imunidade Celular , Memória Imunológica , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Doença Aguda , Linhagem Celular , Feminino , Humanos , Masculino , Domínios ProteicosRESUMO
Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.
Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Doença Aguda , Animais , Anticorpos Monoclonais/metabolismo , Cólera/diagnóstico , Cólera/epidemiologia , Diarreia , Fezes , Humanos , CamundongosRESUMO
In the past decade, multiple mumps outbreaks have occurred in the United States, primarily in close-contact, high-density settings such as colleges, with a high attack rate among young adults, many of whom had the recommended 2 doses of mumps-measles-rubella (MMR) vaccine. Waning humoral immunity and the circulation of divergent wild-type mumps strains have been proposed as contributing factors to mumps resurgence. Blood samples from 71 healthy 18- to 23-year-old college students living in a non-outbreak area were assayed for antibodies and memory B cells (MBCs) to mumps, measles, and rubella. Seroprevalence rates of mumps, measles, and rubella determined by IgG enzyme-linked immunosorbent assay (ELISA) were 93, 93, and 100%, respectively. The index standard ratio indicated that the concentration of IgG was significantly lower for mumps than rubella. High IgG avidity to mumps Enders strain was detected in sera of 59/71 participants who had sufficient IgG levels. The frequency of circulating mumps-specific MBCs was 5 to 10 times lower than measles and rubella, and 10% of the participants had no detectable MBCs to mumps. Geometric mean neutralizing antibody titers (GMTs) by plaque reduction neutralization to the predominant circulating wild-type mumps strain (genotype G) were 6-fold lower than the GMTs against the Jeryl Lynn vaccine strain (genotype A). The majority of the participants (80%) received their second MMR vaccine ≥10 years prior to study participation. Additional efforts are needed to fully characterize B and T cell immune responses to mumps vaccine and to develop strategies to improve the quality and durability of vaccine-induced immunity.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Imunidade Humoral/imunologia , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vírus da Caxumba/imunologia , Caxumba/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Feminino , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Masculino , Vacina contra Sarampo-Caxumba-Rubéola/farmacologia , Caxumba/prevenção & controle , Caxumba/virologia , Adulto JovemRESUMO
Accurate diagnosis of acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is critical for appropriate management of patients with this disease. We examined the possible complementary role of laboratory-developed class-specific clinical serology in assessing SARS-CoV-2 infection in hospitalized patients. Serological tests for immunoglobulin G (IgG), IgA, and IgM antibodies against the receptor binding domain (RBD) of SARS-CoV-2 were evaluated using samples from real-time reverse transcription-quantitative PCR (qRT-PCR)-confirmed inpatient coronavirus disease 2019 (COVID-19) cases. We analyzed the influence of timing and clinical severity on the diagnostic value of class-specific COVID-19 serology testing. Cross-sectional analysis revealed higher sensitivity and specificity at lower optical density cutoffs for IgA in hospitalized patients than for IgG and IgM serology (IgG area under the curve [AUC] of 0.91 [95% confidence interval {CI}, 0.89 to 0.93] versus IgA AUC of 0.97 [95% CI, 0.96 to 0.98] versus IgM AUC of 0.95 [95% CI, 0.92 to 0.97]). The enhanced performance of IgA serology was apparent in the first 2 weeks after symptom onset and the first week after PCR testing. In patients requiring intubation, all three tests exhibit enhanced sensitivity. Among PCR-negative patients under investigation for SARS-CoV-2 infection, 2 out of 61 showed clear evidence of seroconversion IgG, IgA, and IgM. Suspected false-positive results in the latter population were most frequently observed in IgG and IgM serology tests. Our findings suggest the potential utility of IgA serology in the acute setting and explore the benefits and limitations of class-specific serology as a complementary diagnostic tool to PCR for COVID-19 in the acute setting.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Estudos Transversais , Humanos , Imunoglobulina M , Sensibilidade e EspecificidadeRESUMO
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in â¼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos Antiprotozoários/biossíntese , Imunidade Inata/efeitos dos fármacos , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Proteínas de Protozoários/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Adenoviridae/genética , Adenoviridae/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Humanos , Imunização Secundária/métodos , Imunogenicidade da Vacina , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinação/métodosRESUMO
Broadly cross-reactive antibodies (Abs) that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes, including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (MAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the MAbs bound HAs from multiple strains of group 1 viruses, and one MAb, 05-2G02, bound to both group 1 and group 2 influenza A virus HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two MAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One MAb, 70-1F02, cocrystallized with H5 HA and showed heavy-chain-only interactions similar to those seen with the previously described CR6261 anti-stalk antibody. Finally, we show that antibodies that compete with these MAbs are prevalent in serum from an individual recently infected with the A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections by zoonotic or emerging pandemic influenza viruses.IMPORTANCE The rise in zoonotic infections of humans by emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually worldwide. Currently available antiviral treatment options include only neuraminidase inhibitors, but some influenza viruses are naturally resistant to these drugs, and others quickly develop resistance-conferring mutations. Alternative therapeutics are urgently needed. Broadly protective antibodies that target the conserved "stalk" domain of the hemagglutinin represent potential potent antiviral prophylactic and therapeutic agents that can assist pandemic preparedness. Here, we describe four human monoclonal antibodies that target conserved regions of influenza HA and characterize their binding spectrum as well as their protective capacity in prophylactic and therapeutic settings against a lethal challenge with a zoonotic influenza virus.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Proteção Cruzada , Fatores Imunológicos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Humanos , Fatores Imunológicos/imunologia , Camundongos , Testes de Neutralização , Análise de Sobrevida , Resultado do Tratamento , VietnãRESUMO
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus of significant public health concern. ZIKV shares a high degree of sequence and structural homology compared with other flaviviruses, including dengue virus (DENV), resulting in immunological cross-reactivity. Improving our current understanding of the extent and characteristics of this immunological cross-reactivity is important, as ZIKV is presently circulating in areas that are highly endemic for dengue. To assess the magnitude and functional quality of cross-reactive immune responses between these closely related viruses, we tested acute and convalescent sera from nine Thai patients with PCR-confirmed DENV infection against ZIKV. All of the sera tested were cross-reactive with ZIKV, both in binding and in neutralization. To deconstruct the observed serum cross-reactivity in depth, we also characterized a panel of DENV-specific plasmablast-derived monoclonal antibodies (mAbs) for activity against ZIKV. Nearly half of the 47 DENV-reactive mAbs studied bound to both whole ZIKV virion and ZIKV lysate, of which a subset also neutralized ZIKV. In addition, both sera and mAbs from the dengue-infected patients enhanced ZIKV infection of Fc gamma receptor (FcγR)-bearing cells in vitro. Taken together, these findings suggest that preexisting immunity to DENV may impact protective immune responses against ZIKV. In addition, the extensive cross-reactivity may have implications for ZIKV virulence and disease severity in DENV-experienced populations.
Assuntos
Formação de Anticorpos , Vírus da Dengue/imunologia , Dengue/imunologia , Zika virus/imunologia , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Reações Cruzadas , Humanos , Monócitos/virologia , Testes de Neutralização , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologiaRESUMO
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE: The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.
Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Nanopartículas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/metabolismo , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Esquemas de Imunização , Imunoglobulina G/imunologia , Ligantes , Contagem de Linfócitos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/mortalidade , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Proteínas do Envelope Viral/imunologiaRESUMO
Exposure to dengue virus (DENV) is thought to elicit lifelong immunity, mediated by DENV-neutralizing antibodies (nAbs). However, Abs generated by primary infections confer serotype-specific protection, and immunity against other serotypes develops only after subsequent infections. Accordingly, the induction of these nAb responses acquired after serial DENV infections has been a long-sought-after goal for vaccination. Nonetheless, it is still unclear if tetravalent vaccines can elicit or recall nAbs. In this study, we have characterized the responses from a volunteer who had been previously exposed to DENV and was immunized with the live attenuated tetravalent vaccine Butantan-DV, developed by the NIH and Butantan Institute. Eleven days after vaccination, we observed an â¼70-fold expansion of the plasmablast population. We generated 21 monoclonal Abs (MAbs) from singly sorted plasmablasts. These MAbs were the result of clonal expansions and had significant levels of somatic hypermutation (SHM). Nineteen MAbs (90.5%) neutralized at least one DENV serotype at concentrations of 1 µg/ml or less; 6 of the 21 MAbs neutralized three or more serotypes. Despite the tetravalent composition of the vaccine, we observed a neutralization bias in the induced repertoire: DENV3 was targeted by 18 of the 19 neutralizing MAbs (nMAbs). Furthermore, the P3D05 nMAb neutralized DENV3 with extraordinary potency (concentration to achieve half-maximal neutralization [Neut50] = 0.03 µg/ml). Thus, the Butantan-DV vaccine engendered a mature, antigen-selected B cell repertoire. Our results suggest that preexisting responses elicited by a previous DENV3 infection were recalled by immunization.IMPORTANCE The dengue epidemic presents a global public health challenge that causes widespread economic burden and remains largely unchecked by existing control strategies. Successful control of the dengue epidemic will require effective prophylactic and therapeutic interventions. Several vaccine clinical efficacy trials are approaching completion, and the chances that one or more live attenuated tetravalent vaccines (LATVs) will be introduced worldwide is higher than ever. While it is widely accepted that dengue virus (DENV)-neutralizing antibody (nAb) titers are associated with protection, the Ab repertoire induced by LATVs remain uncharacterized. Here, we describe the isolation of potent (Neut50 < 0.1 µg/ml) nAbs from a DENV-seropositive volunteer immunized with the tetravalent vaccine Butantan-DV, which is currently in phase III trials.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Plasmócitos/imunologia , Adulto , Vacinas contra Dengue/administração & dosagem , Feminino , Células HEK293 , Humanos , Masculino , National Institutes of Health (U.S.) , Estados UnidosRESUMO
The recent emergence of Zika virus (ZIKV) in the western hemisphere has been linked to Guillain-Barre syndrome, congenital microcephaly, and devastating ophthalmologic and neurologic developmental abnormalities. The vast geographic spread and adverse disease outcomes of the 2015-2016 epidemic have elevated ZIKV from a previously understudied virus to one of substantial public health interest worldwide. Recent efforts to dissect immunological responses to ZIKV have provided significant insights into the functional quality and antigenic targets of ZIKV-induced B-cell responses. Several groups have demonstrated immunological cross-reactivity between ZIKV and other flaviviruses and have identified antibodies capable of both cross-neutralization, as well as antibody-dependent enhancement (ADE) of ZIKV infection. However, the impact of preexisting flavivirus immunity on ZIKV pathogenesis, the generation of protective responses, and in utero transmission of ZIKV infection remain unclear. Given the widespread endemicity of DENV in the areas most effected by the current ZIKV outbreak, the possibility of ADE is especially concerning and may pose unique challenges to the development and deployment of safe and immunogenic ZIKV vaccines. Here, we review current literature pertaining to ZIKV-induced B-cell responses and humoral cross-reactivity and discuss relevant considerations for the development of vaccines and therapeutics against ZIKV.
Assuntos
Flavivirus/imunologia , Imunidade Humoral , Vacinas Virais , Infecção por Zika virus/imunologia , Zika virus/imunologia , Anticorpos Facilitadores , Linfócitos B/imunologia , Reações Cruzadas , Humanos , Zika virus/fisiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologiaRESUMO
UNLABELLED: Dengue virus (DENV) infection results in the production of both type-specific and cross-neutralizing antibodies. While immunity to the infecting serotype is long-lived, heterotypic immunity wanes a few months after infection. Epidemiological studies link secondary heterotypic infections with more severe symptoms, and cross-reactive, poorly neutralizing antibodies have been implicated in this increased disease severity. To understand the cellular and functional properties of the acute dengue virus B cell response and its role in protection and immunopathology, we characterized the plasmablast response in four secondary DENV type 2 (DENV2) patients. Dengue plasmablasts had high degrees of somatic hypermutation, with a clear preference for replacement mutations. Clonal expansions were also present in each donor, strongly supporting a memory origin for these acutely induced cells. We generated 53 monoclonal antibodies (MAbs) from sorted patient plasmablasts and found that DENV-reactive MAbs were largely envelope specific and cross neutralizing. Many more MAbs neutralized DENV than reacted to envelope protein, emphasizing the significance of virion-dependent B cell epitopes and the limitations of envelope protein-based antibody screening. A majority of DENV-reactive MAbs, irrespective of neutralization potency, enhanced infection by antibody-dependent enhancement (ADE). Interestingly, even though DENV2 was the infecting serotype in all four patients, several MAbs from two patients neutralized DENV1 more potently than DENV2. Further, half of all type-specific neutralizing MAbs were also DENV1 biased in binding. Taken together, these findings are reminiscent of original antigenic sin (OAS), given that the patients had prior dengue virus exposures. These data describe the ongoing B cell response in secondary patients and may further our understanding of the impact of antibodies in dengue virus pathogenesis. IMPORTANCE: In addition to their role in protection, antibody responses have been hypothesized to contribute to the pathology of dengue. Recent studies characterizing memory B cell (MBC)-derived MAbs have provided valuable insight into the targets and functions of B cell responses generated after DENV exposure. However, in the case of secondary infections, such MBC-based approaches fail to distinguish acutely induced cells from the preexisting MBC pool. Our characterization of plasmablasts and plasmablast-derived MAbs provides a focused analysis of B cell responses activated during ongoing infection. Additionally, our studies provide evidence of OAS in the acute-phase dengue virus immune response, providing a basis for future work examining the impact of OAS phenotype antibodies on protective immunity and disease severity in secondary infections.
Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Reações Cruzadas , Vírus da Dengue/imunologia , Dengue/imunologia , Memória Imunológica , Adolescente , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Facilitadores , Dengue/fisiopatologia , Dengue/virologia , Epitopos de Linfócito B , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Sorogrupo , Proteínas do Envelope Viral/imunologia , Adulto JovemRESUMO
The emergence of pandemic influenza viruses poses a major public health threat. Therefore, there is a need for a vaccine that can induce broadly cross-reactive antibodies that protect against seasonal as well as pandemic influenza strains. Human broadly neutralizing antibodies directed against highly conserved epitopes in the stem region of influenza virus HA have been recently characterized. However, it remains unknown what the baseline levels are of antibodies and memory B cells that are directed against these conserved epitopes. More importantly, it is also not known to what extent anti-HA stem B-cell responses get boosted in humans after seasonal influenza vaccination. In this study, we have addressed these two outstanding questions. Our data show that: (i) antibodies and memory B cells directed against the conserved HA stem region are prevalent in humans, but their levels are much lower than B-cell responses directed to variable epitopes in the HA head; (ii) current seasonal influenza vaccines are efficient in inducing B-cell responses to the variable HA head region but they fail to boost responses to the conserved HA stem region; and (iii) in striking contrast, immunization of humans with the avian influenza virus H5N1 induced broadly cross-reactive HA stem-specific antibodies. Taken together, our findings provide a potential vaccination strategy where heterologous influenza immunization could be used for increasing the levels of broadly neutralizing antibodies and for priming the human population to respond quickly to emerging pandemic influenza threats.