RESUMO
To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.
Assuntos
Proteínas de Neoplasias/genética , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Ovarianas/genética , Proteoma , Acetilação , Instabilidade Cromossômica , Reparo do DNA , DNA de Neoplasias , Feminino , Dosagem de Genes , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Processamento de Proteína Pós-Traducional , Análise de SobrevidaRESUMO
A green and inexpensive pretreatment known as dispersive liquid-liquid microextraction (DLLME) was developed in this assay coupled with the LC-MS/MS method for routine analysis of fat soluble vitamins (FSVs). The technique was performed with methanol as the dispersive solvent and dichloromethane as the extraction solvent. The extraction phase containing FSVs was evaporated to dryness and reconstituted in a mixture of acetonitrile and water. The influence variables concerning the DLLME procedure were optimized. After that, the method was investigated for its applicability in LC-MS/MS analysis. As a result, the parameters were settled for the optimal conditions during the DLLME process. A cheap and lipid-free substance was found as an alternative to serum to eliminate the matrix effect while preparing the calibrators. The method validation indicated that it was suitable for determining FSVs in serum. Moreover, this method was applied successfully to determine serum samples, which was consistent with the literature. In summary, the DLLME method developed in this report was reliable and more cost-effective than the traditional LC-MS/MS method, and could be applied in the future.
Assuntos
Microextração em Fase Líquida , Cromatografia Líquida , Microextração em Fase Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Solventes , VitaminasRESUMO
BACKGROUND: Osteochondral defects mostly occur as a result of trauma or articular degeneration. The poor regenerative ability of articular cartilage remains osteochondral defects are a tricky problem to deal with. The modern treatment strategies mainly focus on cartilage tissue engineering with bioactive materials. In this study, we aimed to develop icariin conditioned serum (ICS) together with hyaluronic acid (HA) and determine their ability in reparing osteochondral tissue in a critical-sized defect in rabbit knees. METHODS: Primary chondrocytes were incubated with serum conditioned with icariin at different concentrations, then cell proliferation rates and glycosaminoglycan (GAG) secretion were detected. Rabbits were treated with intra-articular injection of 0.5 mL normal saline (NS), ICS, HA and ICS + HA in the right knee joint, respectively. ICRS scores were used to assess the macroscopic cartilage regeneration. Histological and immunohistochemical analysis including H&E, Safranin O, toluidine blue and collagen II staining were used to determine the repair of cartilage and the regeneration of chondrocytes. RESULTS: Icariin at a low dose of 0.94 g/kg was identified to have significantly promoted the proliferation of chondrocytes and enhance the secretion of GAG. Femoral condyle from rabbits treated by ICS together with HA was observed to be integrated with native cartilage and more subchondral bone regeneration. ICS together with HA could promote repair of the cartilage defect and increase the neoformation of cartilage. CONCLUSIONS: These results demonstrated the potential of ICS combined with HA to promote reparative response in cartilage defects and the possible application in bioactive material based cartilage regeneration therapies.
Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Flavonoides/uso terapêutico , Animais , Condrócitos/efeitos dos fármacos , Epimedium , Flavonoides/farmacologia , Ácido Hialurônico/uso terapêutico , Fitoterapia , Coelhos , Soro , Viscossuplementos/uso terapêuticoRESUMO
BACKGROUND: Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region with multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. METHODS: To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. RESULTS: Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification ranged from 0.1 to 1 fmol/µg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present, it is unknown if this also affects the biological activity of the SPOP protein. CONCLUSIONS: In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, providing significant potential in biomarker development for prostate cancer.
Assuntos
Espectrometria de Massas/métodos , Mutação/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Proteômica/métodos , Proteínas Repressoras/genética , Sequência de Aminoácidos , Células HEK293 , Humanos , Limite de Detecção , Masculino , Peptídeos/química , Peptídeos/metabolismoRESUMO
BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.
Assuntos
Técnicas de Laboratório Clínico , Espectrometria de Massas , Peptídeos/análise , Proteômica , Manejo de Espécimes , Guias como Assunto , Humanos , Peptídeos/isolamento & purificação , PesquisadoresRESUMO
Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high-throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with postexcision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics and provides insights not readily obtainable from such approaches.
Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Ovarianas/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Cromatografia Líquida , Feminino , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Fatores de TempoRESUMO
Targeted mass spectrometry is a promising technology for site-specific quantification of posttranslational modifications. However, a major constraint is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents for enrichment. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometry using a sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection, and multiplexing (PRISM). PRISM provides effective enrichment of target peptides into a given fraction from complex mixture, followed by selected reaction monitoring quantification. Direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) was demonstrated from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided â¼10-fold higher signal intensities, presumably due to the better peptide recovery of PRISM. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of epidermal growth factor at both the peak activation (10 min) and steady state (2 h). The maximal ERK activation was observed with 0.3 and 3 ng/mL doses for 10 min and 2 h time points, respectively. The dose-response profiles of individual phosphorylated isoforms showed that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than distributed model of ERK phosphorylation. The PRISM-SRM quantification of protein phosphorylation illustrates the potential for simultaneous quantification of multiple PTMs.
Assuntos
Mama/enzimologia , Cromatografia Líquida/métodos , Células Epiteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Feminino , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodosRESUMO
BACKGROUND: The established methods for detecting prostate cancer (CaP) are based on tests using PSA (blood), PCA3 (urine), and AMACR (tissue) as biomarkers in patient samples. The demonstration of ERG oncoprotein overexpression due to gene fusion in CaP has thus provided ERG as an additional biomarker. Based on this, we hypothesized that ERG protein quantification methods can be of use in the diagnosis of prostate cancer. METHODS: An antibody-free assay for ERG3 protein detection was developed based on PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry. We utilized TMPRSS2-ERG positive VCaP and TMPRSS2-ERG negative LNCaP cells to simulate three different sample types (cells, tissue, and post-DRE urine sediment). Enzyme-linked immunosorbent assay (ELISA), western blot, NanoString, and qRT-PCR were also used in the analysis of these samples. RESULTS: Recombinant ERG3 protein spiked into LNCaP cell lysates could be detected at levels as low as 20 pg by PRISM-SRM analysis. The sensitivity of the PRISM-SRM assay was approximately 10,000 VCaP cells in a mixed cell population model of VCaP and LNCaP cells. Interestingly, ERG protein could be detected in as few as 600 VCaP cells spiked into female urine. The sensitivity of the in-house ELISA was similar to the PRISM-SRM assay, with detection of 30 pg of purified recombinant ERG3 protein and 10,000 VCaP cells. On the other hand, qRT-PCR exhibited a higher sensitivity, as TMPRSS2-ERG transcripts were detected in as few as 100 VCaP cells, in comparison to NanoString methodologies which detected ERG from 10,000 cells. CONCLUSIONS: Based on this data, we propose that the detection of both ERG transcriptional products with RNA-based assays, as well as protein products of ERG using PRISM-SRM assays, may be of clinical value in developing diagnostic and prognostic assays for prostate cancer given their sensitivity, specificity, and reproducibility.
Assuntos
Regulação Neoplásica da Expressão Gênica , Espectrometria de Massas/métodos , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transativadores/genética , Sequência de Aminoácidos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Neoplasias da Próstata/urina , RNA Mensageiro , Proteínas Recombinantes/metabolismo , Transativadores/metabolismo , Transativadores/urina , Regulador Transcricional ERGRESUMO
Individual proteomes typically differ from the reference human proteome at â¼10,000 single amino acid variants. When viewed on the population scale, this individual variation results in a wide variety of protein sequences. In targeted proteomics experiments, such variability can confound accurate protein quantification. To assist researchers in identifying target peptides with high variability within the human population, we have created the Population Variation plug-in for Skyline, which provides easy access to the polymorphisms stored in dbSNP. Given a set of peptides, the tool reports minor allele frequency for common polymorphisms. We highlight the importance of considering genetic variation by applying the tool to public data sets.
Assuntos
Proteômica , Humanos , Polimorfismo GenéticoRESUMO
Because of its high sensitivity and specificity, selected reaction monitoring (SRM)-based targeted proteomics has become increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to that of CID in triple quadrupole (QQQ) instrumentation and that by selection of the top 6 y fragment ions from HCD spectra, >86% of the top transitions optimized from direct infusion with QQQ instrumentation are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for 3+ precursors and that a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrated the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transition selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.
Assuntos
Proteínas/química , Proteômica , Cromatografia Líquida/métodos , Mapeamento de PeptídeosRESUMO
Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (~3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.
Assuntos
Antígeno Prostático Específico/sangue , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Antígeno Prostático Específico/isolamento & purificação , Sensibilidade e Especificidade , Espectrometria de Massas em TandemRESUMO
Steroid hormones have been reported to be associated with endocrine system diseases. This paper proposes a novel procedure of deep eutectic solvent (DES)-assisted liquid-liquid extraction (LLE) to extract six steroid hormones (including cortisone, cortisol, androstenedione, testosterone, 17-hydroxyprogesterone, and progesterone) from serum coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of five types of L-proline, choline chloride, and citric acid-based DESs were tailored; the DES from L-proline and ethylene glycol at a molar ratio of 1:4 with 20 % acetonitrile was selected as the best-fit assisted solvent for the six steroid hormones compared with other DESs. The parameters for extraction by selected DES were optimized using Box-Behnken design (BBD), and the optimal extraction conditions are 200 µL of acetonitrile, 100 µL of the sample, and 80 µL of DES. Under optimum conditions, the method has good linear calibration ranges (between 0.07 ng mL-1 and 600 ng mL-1), correlation coefficients of determination (r2>0.99), and low limits of quantification (between 0.02 and 0.60 ng mL-1). The extraction recoveries were in the range of 81.84-114.43 %, and the intra-day and inter-day relative standard deviations (RSDs) were less than 10 %.In general, the DES-LC-MS/MS method is a simple and environmentally-friendly method, which can be complementary to the presently available methods for determining steroid hormones in serum.
Assuntos
Solventes Eutéticos Profundos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Limite de Detecção , Esteroides/análise , Extração Líquido-Líquido , Hidrocortisona/análise , Acetonitrilas/análise , Prolina , Cromatografia Líquida de Alta PressãoRESUMO
Laser cladding has emerged as a promising technique for custom-built fabrications, remanufacturing, and repair of metallic components. However, frequent melting and solidification in the process cause inevitable residual stresses that often lead to geometric discrepancies and deterioration of the end product. The accurate physical interpretation of the powder consolidation process remains challenging. Thermomechanical process simulation has the potential to comprehend the layer-by-layer additive process and subsequent part-scale implications. Nevertheless, computational accuracy and efficacy have been serious concerns so far; therefore, a hybrid FEM scheme is adopted for efficient prediction of the temperature field, residual stress, and distortion in multilayer powder-fed laser cladding of Inconel®718. A transient material deposition with powder material modeling is schematized to replicate the fabrication process. Moreover, simulation results for residual stress and distortion are verified with in-house experiments, where residual stress is measured with XRD (X-Ray Diffraction) and geometric distortion is evaluated with CMM (Coordinate Measuring Machine). A maximum tensile residual stress of 373 ± 5 MPa is found in the vicinity of the layer right in the middle of the substrate and predicted results are precisely validated with experiments. Similarly, a 0.68 ± 0.01 mm distortion is observed with numerical simulation and showed a precise agreement with experimental data for the same geometry and processing conditions. Conclusively, the implemented hybrid FEM approach demonstrated a robust and accurate prediction of transient temperature field, residual stresses, and geometric distortion in the multilayer laser cladding of Inconel®718.
RESUMO
The Wnt/ß-catenin signaling pathway plays a critical role in multiple developmental events during embryogenesis and adult tissue homeostasis. Dishevelled (Dvl) is an important component of Wnt/ß-catenin signaling pathway, although the modification, especially phosphorylation, seems closely related to the activity and stability of Dvl, the overall modification status of Dvl is still poorly understood. In this study, we focused on low abundant Dvl3, one of the three Dvl isoforms. Using affinity purification of different sources of Dvl3, followed by digestion with both trypsin and chymotrypsin, we systematically analyzed the overall modification status of Dvl3 with liquid chromatography coupled LTQ-Orbitrap. Altogether, we confidently identified Dvl3 with more than 50% sequence coverage, including 6 phosphorylation, 4 methylation, and 1 dimethylation sites. Most of the identified modification sites were novel and located in the linker region between different motifs. Subsequently, the validity of modified peptides was confirmed by synthetic modified peptides. Finally, SRM analysis was performed to verify and quantify the successive change of one dimethylation site on Dvl3 in vivo during Wnt signaling. Taken together, our study elucidated the existence of a novel post-translational modification on Dvl3 and provided a delicate experimental procedure for analysis of modification on low abundant proteins.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Quimotripsina/química , Proteínas Desgrenhadas , Células HEK293 , Humanos , Imunoprecipitação , Metilação , Dados de Sequência Molecular , Fosfoproteínas/química , Fosforilação , Proteólise , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em TandemRESUMO
Background: Icariin, a traditional Chinese medicine, plays a protective role in the treatment of exercise fatigue. Zinc, a trace element, plays an important role in the reproductive system. Therefore, we aimed to synthesize an Icariin-Zinc complex (by chemical means) and verify its protective effect on exercise fatigue and the reproductive system using animal experiments. Methods: The icariin-zinc complex was prepared by the reaction of icariin carbonyl and zinc ions (molar ratio 1:3). The molecular formula and structural formula of the complex were identified and tested. Fifty-six rats selected by swimming training were randomly divided into six groups: static control, exercise control, icariin, gluconate zinc (G-Zn group), icariin glucose zinc and icariin-zinc exercise ( low, high dose/L-E group, H-E group) groups. These groups respectively received the following doses: 1 ml/100 g, daily gavage with NS (for the first two groups), 45 mg/kg icariin, 110 mg/kg Gluconate Zinc, Icariin glucose zinc (45 mg/kg Icariin and 110 mg/kg Gluconate Zinc), 60 mg/kg icariin zinc and 180 mg/kg icariin zinc. After 3 weeks of gavage, we conducted 6 weeks of exhaustive swimming training. Test indices such as exhaustive swimming time of rats and body weight were evaluated after the last training exercise. The seminal vesicles, testes, and prostate gland were weighed, and their indices were calculated. The levels of testosterone (in the plasma) and glycogen (in the liver and muscle homogenates) were also evaluated using ELISA. Results: Compared with the static control group, the exhaustive swimming time of the rats in each group was prolonged. Compared with the other groups, the exhaustive swimming time of the L-E and H-E groups was significantly longer (p < 0.01); the Icariin-Zinc complex significantly increased the exhaustive swimming time of the rats. Compared with the static control group, the plasma testosterone content of the L-E and H-E groups increased significantly (p < 0.05). Compared with the exercise control group and G-Zn group, the plasma testosterone content of the H-E group also increased significantly (p < 0.01). The Icariin-Zinc complex significantly increased the serum levels of testosterone in rats. Compared with the control group, the muscle glycogen reserves of each group decreased, indicating that the muscle glycogen reserves of the rats decreased after swimming. Compared with other groups, the Icariin-Zinc complex can reduce the level of glycogen in the muscles, indicating that it can increase the utilization efficiency of glycogen in muscles. Compared with the static control and exercise control groups, the testicular weight of rats in the administration groups increased slightly. The Icariin-Zinc complex increased the testicular weight, indicating that the function of the reproductive system was improved to some extent. Conclusion: Icariin-Zinc can significantly prolong the exhaustive swimming time, improve exercise ability, and increase the plasma testosterone level (which is beneficial for improving the reproductive ability of male rats). Moreover, the beneficial effect of Icariin-Zinc on the glycogen content, testis index, and other reproductive system glands is dose-dependent.
RESUMO
Increasing attention has been paid to the urinary proteome because it holds the promise of discovering various disease biomarkers. However, most of the urine proteomics studies routinely relied on protein pre-fractionation and so far did not present characterization on phosphorylation status. Two robust approaches, integrated multidimensional liquid chromatography (IMDL) and Yin-yang multidimensional liquid chromatography (MDLC) tandem mass spectrometry, were recently developed in our laboratory, with high-coverage identification of peptide mixtures. In this study, we adopted a strategy without pre-fractionation on the protein level for urinary proteome identification, using both the IMDL and the Yin-yang MDLC methods for peptide fractionation followed by identification using a linear ion trap-orbitrap (LTQ-Orbitrap) mass spectrometer with high resolution and mass accuracy. A total of 1310 non-redundant proteins were highly confidently identified from two experiments, significantly including 59 phosphorylation sites. More than half the annotated identifications were membrane-related proteins. In addition, the lysosomal as well as kidney-associated proteins were detected. Compared with the six largest datasets of urinary proteins published previously, we found our data included most of the reported proteins. Our study developed a robust approach for exploring the human urinary proteome, which would provide a catalogue of urine proteins on a global scale. It is the first report, to our best knowledge, to profile the urinary phosphoproteome. This work significantly extends current comprehension of urinary protein modification and its potential biological significance. Moreover, the strategy could further serve as a reference for biomarker discovery.
Assuntos
Cromatografia Líquida/métodos , Fosfoproteínas/química , Proteínas/química , Proteinúria/urina , Proteoma/química , Espectrometria de Massas em Tandem/métodos , Urina/química , Acetona , Adulto , Biomarcadores/química , Estruturas Celulares/química , Precipitação Química , Bases de Dados de Proteínas , Humanos , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , Tripsina/metabolismoRESUMO
BACKGROUND: The measurement of plasma catecholamines (CAs) including dopamine (DA), epinephrine (E), and norepinephrine (NE) and their derivatives including metanephrine (MN), normetanephrine (NMN), vanillylmandelic acid (VMA), and homovanillic acid (HVA) has been used in the diagnosis of pheochromocytoma and paraganglioma (PPGL) and primary hypertension (PH) but are typically detected individually when clinical testing. In this study, pre-column derivatization with dansyl chloride (DNS-Cl) combined with an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to simultaneously quantify HVA, VMA, MN, NMN, DA, E, and NE in the plasma from patients with PPGL and PH. METHODS: Plasma samples were extracted by acetonitrile and derivatized with DNS-Cl, followed by reverse phase separation and triple quadruple detection. Quantification of the CAs and their derivatives in 10 PPGL, 10 PH, and 100 healthy subjects was performed by UPLC-MS/MS analysis. RESULTS: All the values of detected CAs/derivatives were in the linearity ranges of the fitted curves. The expression levels of the seven CAs in the PPGL and PH patients were significantly higher than the healthy controls, suggesting increased CA production in the former. There were significant differences in plasma NE, NMN, and VMA levels between the PPGL and PH patients, but there was no significant difference in plasma E, MN, DA, and HVA. A discriminant analysis showed that 90% of the final cases were classified correctly based on the detected CAs/derivatives. CONCLUSIONS: Our results show that the combined detection of the seven CAs/derivatives could be used for the clinical diagnosis of PPGL and PH.
Assuntos
Neoplasias das Glândulas Suprarrenais/sangue , Neoplasias das Glândulas Suprarrenais/complicações , Catecolaminas/sangue , Cromatografia Líquida/métodos , Hipertensão/sangue , Hipertensão/complicações , Feocromocitoma/sangue , Feocromocitoma/complicações , Espectrometria de Massas em Tandem/métodos , Adulto , Calibragem , Feminino , Humanos , Masculino , Controle de QualidadeRESUMO
Each year, thousands of patients are at risk of cerebral ischemic injury, due to iatrogenic responses to surgical procedures. Prophylactic treatment of these patients as standard care could minimize potential neurological complications. We have shown that protection of brain tissue, in a non-human primate model of cerebral ischemic injury, is possible through pharmacological preconditioning using the immune activator D192935. We postulate that preconditioning with D192935 results in neuroprotective reprogramming that is evident in the brain following experimentally induced cerebral ischemia. We performed quantitative proteomic analysis of cerebral spinal fluid (CSF) collected post-stroke from our previously published efficacy study to determine whether CSF protein profiles correlated with induced protection. Four groups of animals were examined: naïve animals (no treatment or stroke); animals treated with vehicle prior to stroke; D192935 treated and stroked animals, further delineated into two groups, ones that were protected (small infarcts) and those that were not protected (large infarcts). We found that distinct protein clusters defined the protected and non-protected animal groups, with a 16-member cluster of proteins induced exclusively in D192935 protected animals. Seventy percent of the proteins induced in the protected animals have functions that would enhance neuroprotection and tissue repair, including several members associated with M2 macrophages, a macrophage phenotype shown to contribute to neuroprotection and repair during ischemic injury. These studies highlight the translational importance of CSF biomarkers in defining mechanism and monitoring responses to treatment in development of stroke therapeutics.
Assuntos
Isquemia Encefálica/líquido cefalorraquidiano , Isquemia Encefálica/prevenção & controle , Precondicionamento Isquêmico/métodos , Neuroproteção/fisiologia , Proteômica/métodos , Animais , Isquemia Encefálica/patologia , Macaca mulatta , Masculino , Neuroproteção/efeitos dos fármacos , Receptor Toll-Like 9/agonistasRESUMO
Mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are emerging as a promising tool for verification of candidate proteins in biological and biomedical applications. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large sets of targeted MS-based assays, and a depository to share assays publicly. Herein, we report the development of 98 SRM assays that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document; 37 of these passed all five experimental tests. The assays cover 70 proteins previously identified at the protein level in ovarian tumors. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and endogenous detection are described in detail. Data are available via PeptideAtlas, Panorama and the CPTAC Assay Portal.