Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120193, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301474

RESUMO

Wetlands, known as the "kidney of the earth", are an important component of global ecosystems. However, they have been changed under multiple stresses in recent decades, which is especially true in the Yellow River Delta. This study examined the spatiotemporal change characteristics of wetlands in the Yellow River Delta from 1980 to 2020 and predicted detailed wetland changes from 2020 to 2030 with the patch-generating land use simulation (PLUS) model under four scenarios, namely, the natural development scenario (NDS), the farmland protection scenario (FPS), the wetland protection scenario (WPS) and the harmonious development scenario (HDS). The results showed that wetlands increased 709.29 km2 from 1980 to 2020 overall, and the wetland types in the Yellow River Delta changed divergently. Over the past four decades, the tidal flats have decreased, whereas the reservoirs and ponds have increased. The gravity center movement of wetlands differed among the wetland types, with artificial wetlands moving to the northwest and natural wetlands moving to the south. The movement distance of the gravity center demonstrated apparent phase characteristics, and an abrupt change occurred from 2005 to 2010. The PLUS model was satisfactory, with an overall accuracy (OA) value greater than 83.48 % and an figure of merit (FOM) value greater than 0.1164. From 2020 to 2030, paddy fields and tidal flats decreased, whereas natural water, marshes and reservoirs and ponds increased under the four scenarios. The WPS was a relatively ideal scenario for wetlands, and the HDS was an alternative scenario for wetland restoration and food production. In the future, more attention should be paid to restoring natural wetlands to prevent further degradation in the Yellow River Delta. This study provides insights into new understandings of historical and future changes in wetlands and may have implications for wetland ecosystem protection and sustainable development.


Assuntos
Ecossistema , Áreas Alagadas , Rios , China , Desenvolvimento Sustentável , Conservação dos Recursos Naturais
2.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064859

RESUMO

An electron donor-acceptor complex was utilized to generate alkoxy radicals from alcohols under mild conditions using visible light. This approach was combined with a hydroxybromination process to achieve the deconstructive functionalization of alkenes, leading to the production of geminal dibromides. Mechanistic investigations indicated the intermediacy of hypervalent iodine (III) compounds.

3.
J Am Chem Soc ; 145(51): 28111-28123, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091498

RESUMO

The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ). We report eight new crystal structures and study the consequence of varying the B-site (Pb, Sn, Ge) and dimension (n = 1, 2, vs 3D). Dimension strongly influences local distortion and structural symmetry, and the increased octahedral tilting and lone pair effects in Ge perovskites lead to a polar n = 2 perovskite that exhibits second harmonic generation, (4Br2FBZ)2(Cs)Ge2I7. In contrast, the analogous Sn and Pb perovskites remain centrosymmetric, but the B-site metal influences the photoluminescence properties. The Pb perovskites exhibit broad, defect-mediated emission at low temperature, whereas the Sn perovskites show purely excitonic emission over the entire temperature range, but the carrier recombination dynamics depend on dimensionality and dark excitonic states. Wholistic understanding of these differences that arise based on cations and dimensionality can guide the rational materials design of 2D perovskites for targeting physical properties for optoelectronic applications based on the interplay of cations and the connectivity of the inorganic framework.

4.
Small ; : e2308264, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059787

RESUMO

Conductive metal-organic frameworks (MOFs) are a type of porous material. It consists of metal ions coordinated with highly conjugated organic ligands. The high density of carriers and orbital overlap contribute to the amazing conductivity. Additionally, conductive MOFs inherit the advantages of large specific surface area, structural diversity, and adjustable pore size from MOFs. These excellent properties have attracted many researchers to explore controllable synthesis and electrochemical applications over the past decade. This work provides an overview of the recent advances in the synthesis strategies of conductive MOFs and highlights their applications in electrocatalysis, supercapacitors, sensors, and batteries. Finally, the challenges faced by the synthesis and application of conductive MOFs are discussed, as well as the views on promising solutions for them are presented.

5.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139539

RESUMO

Evaluating the levels of the biomarker carbohydrate antigen 19-9 (CA19-9) is crucial in early cancer diagnosis and prognosis assessment. In this study, an antifouling electrochemical immunosensor was developed for the label-free detection of CA19-9, in which bovine serum albumin (BSA) and graphene were cross-linked with the aid of glutaraldehyde to form a 3D conductive porous network on the surface of an electrode. The electrochemical immunosensor was characterized through the use of transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), UV spectroscopy, and electrochemical methods. The level of CA19-9 was determined through the use of label-free electrochemical impedance spectroscopy (EIS) measurements. The electron transfer at the interface of the electrode was well preserved in human serum samples, demonstrating that this electrochemical immunosensor has excellent antifouling performance. CA19-9 could be detected in a wide range from 13.5 U/mL to 1000 U/mL, with a detection limit of 13.5 U/mL in human serum samples. This immunosensor also exhibited good selectivity and stability. The detection results of this immunosensor were further validated and compared using an enzyme-linked immunosorbent assay (ELISA). All the results confirmed that this immunosensor has a good sensing performance in terms of CA19-9, suggesting its promising application prospects in clinical applications.


Assuntos
Incrustação Biológica , Técnicas Biossensoriais , Grafite , Humanos , Antígeno CA-19-9 , Soroalbumina Bovina , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química
6.
Biotechnol Bioeng ; 119(8): 2015-2030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35441364

RESUMO

Taste is one of the most basic and important sensations that is able to monitor the food quality and avoid intake of potential danger materials. Whether as an inevitable symptom of aging or a complication of cancer treatment, taste loss very seriously affects the patient's life quality. Taste bud organoids provide an alternative and convenient approach for the research of taste functions and the underlying mechanisms due to their characteristics of availability, strong maneuverability, and high similarity to the in-vivo taste buds. This review gives a systemic and comprehensive introduction to the preparation and application of taste bud organoids towards chemical sensing mechanisms. First, the basic structures and functions of taste buds will be briefly introduced. Then, the currently available approaches for the preparation of taste bud organoids are summarized and discussed, which are mainly divided into two categories, that is, the stem/progenitor cell-derived approach and the tissue-derived approach. Next, different applications of taste bud organoids in biomedicine are outlined based on their central roles such as disease modeling, biological sensing, gene regulation, and signal transduction. Finally, the current challenges, future development trends, and prospects of research in taste bud organoids are proposed and discussed.


Assuntos
Papilas Gustativas , Humanos , Organoides , Sensação , Células-Tronco/fisiologia , Paladar/fisiologia , Papilas Gustativas/fisiologia
7.
J Nanobiotechnology ; 19(1): 192, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183023

RESUMO

It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Nanoestruturas/uso terapêutico , Medicina de Precisão/métodos , Animais , Linhagem Celular Tumoral , Quimioterapia Combinada , Humanos , Hipóxia , Imunoterapia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Oxigênio , Fotoquimioterapia , Espécies Reativas de Oxigênio , Microambiente Tumoral/efeitos dos fármacos
8.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883883

RESUMO

After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte-insulator-semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais , Eletrólitos , Potenciometria , Semicondutores
9.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300682

RESUMO

Saxitoxin (STX) belongs to the family of marine biological toxins, which are major contaminants in seafood. The reference methods for STX detection are mouse bioassay and chromatographic analysis, which are time-consuming, high costs, and requirement of sophisticated operation. Therefore, the development of alternative methods for STX analysis is urgent. Electrochemical analysis is a fast, low-cost, and sensitive method for biomolecules analysis. Thus, in this study, an electrolyte-insulator-semiconductor (EIS) sensor based on aptamer-modified two-dimensional layered Ti3C2Tx nanosheets was developed for STX detection. The high surface area and rich functional groups of MXene benefited the modification of aptamer, which had specific interactions with STX. Capacitance-voltage (C-V) and constant-capacitance (ConCap) measurement results indicated that the aptasensor was able to detect STX with high sensitivity and good specificity. The detection range was 1.0 nM to 200 nM and detection limit was as low as 0.03 nM. Moreover, the aptasensor was found to have a good selectivity and two-week stability. The mussel tissue extraction test suggested the potential application of this biosensor in detecting STX in real samples. This method provides a convenient approach for low-cost, rapid, and label-free detection of marine biological toxins.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Animais , Técnicas Eletroquímicas , Limite de Detecção , Toxinas Marinhas , Camundongos , Saxitoxina , Titânio
10.
Anal Chem ; 92(14): 9739-9744, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32437169

RESUMO

A new photoelectrochemical imaging method termed scanning electrochemical photometric sensor (SEPS) is proposed in this work. It was derived from light-addressable potentiometric sensor (LAPS) and scanning photoinduced impedance microscopy (SPIM) using a front-side laser illumination at a field-effect structure. When the laser beam scans across the sensor substrate, local photocurrent changes at inversion due to the light absorption of analytes can be recorded. It will be shown that SEPS could be used for label-free living cell imaging with micro-resolution as well as real-time quantitative absorption analysis, which would broaden the applications of traditional LAPS/SPIM from potentiometric/impedance measurements to local optical analysis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Análise de Célula Única/métodos , Escherichia coli
11.
Opt Express ; 28(15): 21805-21813, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752452

RESUMO

We report the CsPbI3 random lasing at room temperature fabricated by a chemical deposition method. The CsPbI3 thin films with high crystalline quality have intense PL emission and easily achieve the lasing behavior with the Q-factor value over 7000. The lasing behavior of CsPbI3 thin films can be classified as random lasing by measuring lasing spectra at different collective angles. The fast Fourier transform analysis of the lasing spectra is employed to determine the effective cavity length. Most important of all, the lasing stability investigation shows the prolonged lasing stability over 4.8 X 105 laser shots in air.

12.
Soft Matter ; 16(1): 270-275, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782471

RESUMO

The robust cell-in-shell structure is highly desirable for endowing living cells with an artificial exoskeleton to defend them from many environmental factors such as osmotic pressure, shear force, heat, UV radiation, and enzymes. Cell encapsulation has shown potential applications in many fields and attracted increasing interest. However, the influences of the precursors on the cell viability during the shell formation process are not clear and seldom investigated. Here, zinc nitrite, zinc acetate and zinc sulfate were applied individually to synthesize zeolitic imidazolate framework-8 (ZIF-8) shells on living cells. All the zinc salt precursors could convert to a ZIF-8 layer on the living cell surface. The zinc salts and organic ligand did not exhibit obvious toxicity to yeast cells when applied individually. However, dead cells were observed during the living cell encapsulation process using different zinc precursors. Compared with zinc nitrate and zinc acetate, ZIF-8 formed by zinc sulfate led to a higher percentage of cell death, especially under high concentrations of zinc sulfate. Cell division was suppressed by the ZIF-8 shell but restored fully upon shell removal by EDTA solution or pH 4.0 buffer. Escherichia coli (E. coli) cells showed a lower percentage of cell death, indicating excellent tolerance to the ZIF-8 encapsulation process. This work illustrates the cell toxicity during the formation of ZIF-8 cell shells by different zinc salts and engineering of the cell growth by MOF coating, which could provide a foundation for further quantitative analysis and potential applications in biomedicine and bioengineering.


Assuntos
Imidazóis/química , Estruturas Metalorgânicas/química , Zinco/química , Escherichia coli/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Nitratos/química , Saccharomyces cerevisiae/química , Acetato de Zinco/química , Compostos de Zinco/química , Sulfato de Zinco/química
13.
Soft Matter ; 16(28): 6591-6598, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597437

RESUMO

The fabrication of scaffolds with suitable chemical, physical, and electrical properties is critical for nerve cell adhesion and proliferation. Recently, electrical stimulation on conductive polymers has been applied to construct functional nerve cell scaffolds. Herein, we prepared natural polymer (cellulose)/conductive polymer nanofibrous mats, i.e., electrospun cellulose (EC)/poly N-vinylpyrrole (PNVPY) and EC/poly(3-hexylthiophene) (P3HT) through an efficient in situ polymerization method. The surface immobilization was characterized by optical microscopy (OM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, hydrophilicity, porosity, and cyclic voltammetry. The OM and SEM images showed that PNVPY formed polymer coatings and aggregated nanoparticles on the EC nanofibers, while P3HT only produced polymer coatings. Compared with pure EC mats, both the composite mats had increased thickness, higher porosity, and higher conductivity. Also, an increase in hydrophilicity was found for EC/P3HT. In vivo cytocompatibility of the undifferentiated PC12 cells showed that the EC/PNVPY and EC/P3HT scaffolds exhibited favorable cell activity, adhesion, and proliferation. Furthermore, the results of electrical stimulation experiments indicated that the EC/P3HT mats could effectively promote the proliferation of the PC12 cells more than the EC and EC/PNVPY mats. The findings suggest a positive outcome regarding the conductive polymer-modified EC/PNVPY and EC/P3HT nanofibrous mats in neural tissue engineering.


Assuntos
Nanofibras , Engenharia Tecidual , Animais , Proliferação de Células , Celulose , Estimulação Elétrica , Polímeros , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais
14.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842267

RESUMO

The detection of bacterial deoxyribonucleic acid (DNA) is of great significance in the quality control of food and water. In this study, a light-addressable potentiometric sensor (LAPS) deposited with highly oriented ZnO nanorod arrays (NRAs) was used for the label-free detection of single-stranded bacterial DNA (ssDNA). A functional, sensitive surface for the detection of Escherichia coli (E. coli) O157:H7 DNA was prepared by the covalent immobilization of the specific probe single-stranded DNA (ssDNA) on the LAPS surface. The functional surface was exposed to solutions containing the target E. coli ssDNA molecules, which allowed for the hybridization of the target ssDNA with the probe ssDNA. The surface charge changes induced by the hybridization of the probe ssDNA with the target E. coli ssDNA were monitored using LAPS measurements in a label-free manner. The results indicate that distinct signal changes can be registered and recorded to detect the target E. coli ssDNA. The lower detection limit of the target ssDNA corresponded to 1.0 × 102 colony forming units (CFUs)/mL of E. coli O157:H7 cells. All the results demonstrate that this DNA biosensor, based on the electrostatic detection of ssDNA, provides a novel approach for the sensitive and effective detection of bacterial DNA, which has promising prospects and potential applications in the quality control of food and water.


Assuntos
Técnicas Biossensoriais , DNA Bacteriano/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Escherichia coli O157/isolamento & purificação , DNA Bacteriano/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Humanos , Luz , Nanotubos/química , Potenciometria/métodos
15.
Sensors (Basel) ; 17(12)2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29232897

RESUMO

Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals' signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed.


Assuntos
Biomimética , Animais , Técnicas Biossensoriais , Odorantes , Olfato , Paladar
16.
Analyst ; 140(21): 7048-61, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26308143

RESUMO

Biosensors utilizing living tissues and cells have recently gained significant attention as functional devices for chemical sensing and biochemical analysis. These devices integrate biological components (i.e. single cells, cell networks, tissues) with micro-electro-mechanical systems (MEMS)-based sensors and transducers. Various types of cells and tissues derived from natural and bioengineered sources have been used as recognition and sensing elements, which are generally characterized by high sensitivity and specificity. This review summarizes the state of the art in tissue- and cell-based biosensing platforms with an emphasis on those using taste, olfactory, and neural cells and tissues. Many of these devices employ unique integration strategies and sensing schemes based on sensitive transducers including microelectrode arrays (MEAs), field effect transistors (FETs), and light-addressable potentiometric sensors (LAPSs). Several groups have coupled these hybrid biosensors with microfluidics which offers added benefits of small sample volumes and enhanced automation. While this technology is currently limited to lab settings due to the limited stability of living biological components, further research to enhance their robustness will enable these devices to be employed in field and clinical settings.


Assuntos
Sistemas Microeletromecânicos , Neurônios/metabolismo , Olfato , Paladar , Animais , Bioengenharia/instrumentação , Bioengenharia/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Luz , Microfluídica/instrumentação , Redes Neurais de Computação , Potenciometria/instrumentação , Potenciometria/métodos , Reprodutibilidade dos Testes , Semicondutores , Temperatura , Transdutores
17.
Zootaxa ; (3802): 373-80, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24871017

RESUMO

Oriental species currently classified in the genus Heliosia Hampson, 1900 but in fact belonging to Nudariini are separated into the new genus Paraheliosia gen. nov.: Paraheliosia elegans (Reich, 1937) comb. nov. (type species) from South-East China; P. rufa (Leech, 1890) comb. nov. from North China (nominotypical subspecies) and Primorskiy Kray of Russia (P. r. ussuriensis (O. Bang-Haas, 1927) comb. nov.); and P. novirufa (Fang, 1992) comb. nov. from Sichuan. Presence of two strong apical spines at juxta apex and basal costal valve processes looks to be well marked autapomorphic characters of the new genus. Heliosia punctata Fang, 1992 is transferred into Elachistidae, Aeolanthinae but to unknown genus.


Assuntos
Mariposas/anatomia & histologia , Mariposas/classificação , Animais , Ásia Oriental , Feminino , Masculino , Sibéria
18.
Sci Total Environ ; 921: 171093, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387589

RESUMO

Ecological compensation is an effective means to reconcile the imbalance of eco-social development between regions and promote enthusiasm for ecological environmental protection. There is some conformity between the theory of ecosystem service flow and ecological compensation, which provides new technical support for the formulation of ecological compensation policy. This study took the Qinghai-Tibet Plateau as the research area, adopted the breaking point model to obtain the spatial characteristics of carbon sequestration flow, and formulated a multilevel ecological compensation policy with Tibet as the design object. The results showed that most of the Qinghai-Tibet Plateau has a carbon sequestration surplus; the central and eastern Qinghai-Tibet Plateau, western Sichuan are successively carbon sequestration supply areas; the Chengdu Plain and Xinjiang were listed as carbon sequestration benefit areas; and the carbon sequestration tended to flow more closely between supply and benefit areas in proximity to each other. Nyingchi, Chamdo, Naqu and Shannan in Tibet need to receive a total ecological compensation of 393.21 million USD, of which 93.71 % is from the national level, 6.02 % is from carbon sequestration benefit areas in other provinces; furthermore, Lhasa and Shigatse in Tibet need to provide the remaining ecological compensation. This study offers innovations for the formulation of ecological compensation policies and provide a new theory for ecological environment management.

19.
Adv Mater ; : e2407652, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267373

RESUMO

While significant efforts have been devoted to optimize the thin-film stoichiometry and processing of perovskites for applications in photovoltaic and light-emitting diodes, there is a noticeable lack of emphasis on tailoring them for lasing applications. In this study, it is revealed that thin films engineered for efficient light-emitting diodes, with passivation of deep and shallow trap states and a tailored energetic landscape directing carriers toward low-energy emitting states, may not be optimal for light amplification systems. Instead, amplified spontaneous emission (ASE) is found to be sustained by shallow defects, driven by the positive correlation between the ASE threshold and the ratio of carrier injection rate in the emissive state to the recombination rate of excited carriers. This insight has informed the development of an optimized perovskite thin film and laser device exhibiting a low threshold (≈ 60 µJ cm-2) and stable ASE emission exceeding 21 hours in ambient conditions.

20.
Mitochondrial DNA B Resour ; 9(10): 1433-1438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39450205

RESUMO

The complete mitochondrial genome of the Parotis chlorochroalis was sequenced, revaeling a length of 15239 bp with 37 genes and an A + T-rich region. All c13 PCGs begin with typical ATN codons, except COI gene, which starts with CGA. Eleven genes terminate with TAA, two with T-. All 22 tRNA genes exhibit typical cloverleaf structure except for trnS1 P. chlorochroalis has two relatively conserved intergenic regions and two relatively conserved overlapping regions. Phylogenetic analysis support P. chlorochroalis belongs to subfamily Spilomelinae, the topologies of Crambidae are highly congruent with previous studies. This newly sequences mitochondrial genome provides valuable resources for taxonomic inference and evolutionary studies of genus Parotis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA