Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharm ; 21(5): 2272-2283, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607681

RESUMO

Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.


Assuntos
Nanopartículas , Fosfolipídeos , Coroa de Proteína , Coroa de Proteína/química , Animais , Fosfolipídeos/química , Distribuição Tecidual , Camundongos , Nanopartículas/química , Portadores de Fármacos/química , Nanoestruturas/química , Masculino , Ativação do Complemento/efeitos dos fármacos , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química
2.
Acta Pharmacol Sin ; 45(3): 646-659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845342

RESUMO

Higher drug loading employed in nanoscale delivery platforms is a goal that researchers have long sought after. But such viewpoint remains controversial because the impacts that nanocarriers bring about on bodies have been seriously overlooked. In the present study we investigated the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin (PLD). We prepared PLDs with two different drug loading rates: high drug loading rate, H-Dox, 12.9% w/w Dox/HSPC; low drug loading rate, L-Dox, 2.4% w/w Dox/HSPC (L-Dox had about 5 folds drug carriers of H-Dox at the same Dox dose). The pharmaceutical properties and biological effects of H-Dox and L-Dox were compared in mice, rats or 4T1 subcutaneous tumor-bearing mice. We showed that the lowering of doxorubicin loading did not cause substantial shifts to the pharmaceutical properties of PLDs such as in vitro and in vivo stability (stable), anti-tumor effect (equivalent effective), as well as tissue and cellular distribution. Moreover, it was even more beneficial for mitigating the undesired biological effects caused by PLDs, through prolonging blood circulation and alleviating cutaneous accumulation in the presence of pre-existing anti-PEG Abs due to less opsonins (e.g. IgM and C3) deposition on per particle. Our results warn that the effects of drug loading would be much more convoluted than expected due to the complex intermediation between nanocarriers and bodies, urging independent investigation for each individual delivery platform to facilitate clinical translation and application.


Assuntos
Doxorrubicina , Polietilenoglicóis , Camundongos , Ratos , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Polietilenoglicóis/farmacologia , Portadores de Fármacos
3.
Eur J Pharm Biopharm ; : 114389, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945407

RESUMO

Liposomes represent one of the most extensively studied nano-carriers due to their potential in targeted drug delivery. However, the complex in vivo fate, particularly under pathological conditions, presents challenges for clinical translation of liposomal therapeutics. Liver serves as the most important organ for liposome accumulation and metabolism. Unfortunately, the fate of liposomes under pathological liver conditions has been significantly overlooked. This study aimed to investigate the in vivo pharmacokinetic profile and biodistribution profile of liposomes under drug-induced liver injury (DILI) conditions. Two classic DILI animal models, i.e. acetaminophen-induced acute liver injury (AILI) and triptolide-induced subacute liver injury (TILI), were established to observe the effect of pathological liver conditions on the in vivo performance of liposomes. The study revealed significant changes in the in vivo fate of liposomes following DILI, including prolonged blood circulation and enhanced hepatic accumulation of liposomes. Changes in the composition of plasma proteins and mononuclear phagocyte system (MPS)-related cell subpopulations collectively led to the altered in vivo fate of liposomes under liver injury conditions. Despite liver injury, macrophages remained the primary cells responsible for liposomes uptake in liver, with the recruited monocyte-derived macrophages exhibiting enhanced ability to phagocytose liposomes under pathological conditions. These findings indicated that high capture of liposomes by the recruited hepatic macrophages not only offered potential solutions for targeted delivery, but also warned the clinical application of patients under pathological liver conditions.

4.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950189

RESUMO

Liposomes are versatile drug delivery systems in clinical use for cancer and many other diseases. Unfortunately, PEGylated liposomal doxorubicin (sLip/DOX) exhibits serious dose-limiting cutaneous toxicities, which are closely related to the extravascular accumulation of sLip/DOX in the dermis. No clinical interventions have been proposed for cutaneous toxicities due to the elusive transport pathways. Herein, we showed that the reciprocal interaction between liposomes and neutrophils played pivotal roles in liposome extravasation into the dermis. Neutrophils captured liposomes via the complement receptor 3 (CD11b/CD18) recognizing the fragment of complement component C3 (iC3b) deposited on the liposomal surface. Uptake of liposomes also activated neutrophils to induce CD11b upregulation and enhanced the ability of neutrophils to migrate outside the capillaries. Furthermore, inhibition of complement activation either by CRIg-L-FH (a C3b/iC3b targeted complement inhibitor) or blocking the phosphate negative charge in mPEG-DSPE could significantly reduce liposome uptake by neutrophils and alleviate the cutaneous accumulation of liposomes. These results validated the liposome extravasation pathway mediated by neutrophils and provided potential solutions to the devastating cutaneous toxicities occurring during sLip/DOX treatment.

5.
Pharmaceutics ; 14(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456702

RESUMO

Lung metastasis of colorectal cancer is common in the clinic; however, precise targeting for the diagnosis and therapy purposes of those lung metastases remains challenging. Herein, cholera toxin subunit b (CTB) protein was chemically conjugated on the surface of PEGylated liposomes (CTB-sLip). Both human-derived colorectal cancer cell lines, HCT116 and HT-29, demonstrated high binding affinity and cellular uptake with CTB-sLip. In vivo, CTB-sLip exhibited elevated targeting capability to the lung metastasis of colorectal cancer in the model nude mice in comparison to PEGylated liposomes (sLip) without CTB modification. CTB conjugation induced ignorable effects on the interaction between liposomes and plasma proteins but significantly enhanced the uptake of liposomes by numerous blood cells and splenic cells, leading to relatively rapid blood clearance in BALB/c mice. Even though repeated injections of CTB-sLip induced the production of anti-CTB antibodies, our results suggested CTB-sLip as promising nanocarriers for the diagnosis of lung metastasis of colorectal cancer.

6.
J Mater Chem B ; 9(34): 6713-6727, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34328485

RESUMO

Nanomedicine is recognized as a promising agent for diverse biomedical applications; however, its safety and efficiency in clinical practice remains to be enhanced. A priority issue is the protein corona (PC), which imparts unique biological identities to prototype and determines the actual biological functions in biological fluids. Decades of work has already illuminated abundant considerations that influence the composition of the protein corona. Thereinto, the physical assets of nanomedicines (e.g., size and shape, surface properties, nanomaterials) and the biological environment collectively play fundamental roles in shaping the PC, including the types and quantities of plasma proteins. The properties of nanomedicines are dependent on certain factors. This review aims to explore the applications of nanomedicines by regulating their interplay with PC.


Assuntos
Materiais Biocompatíveis/metabolismo , Nanomedicina , Coroa de Proteína/metabolismo , Materiais Biocompatíveis/química , Humanos , Teste de Materiais , Tamanho da Partícula , Coroa de Proteína/química , Propriedades de Superfície
7.
Adv Drug Deliv Rev ; 174: 210-228, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887404

RESUMO

Nanomedicines are of increasing scrutiny due to their improved efficacy and/or mitigated side effects. They can be integrated with many other therapeutics to further boost the clinical benefits. Among those, herbal medicines are arousing great interest to be combined with nanomedicines to exert synergistic effects in multifaceted mechanisms. The in vivo performance of nanomedicines which determines the therapeutic efficacy and safety is believed to be heavily influenced by the physio-pathological characters of the body. Activation of multiple immune factors, e.g., complement system, phagocytic cells, lymphocytes, and among many others, can affect the fate of nanomedicines in blood circulation, biodistribution, interaction with single cells and intracellular transport. Immunomodulatory effects and metabolic regulation by herbal medicines have been widely witnessed during the past decades, which alter the physio-pathological conditions and dramatically affect in vivo delivery of nanomedicines. In this review, we summarize recent progress of understanding on the in vivo delivery process of nanomedicines and analyze the major affecting factors that regulate the interaction of nanomedicines with organisms. We discuss the immunomodulatory roles and metabolic regulation by herbal medicines and their effects on in vivo delivery process of nanomedicines, as well as the prospective clinical benefits from the combination of nanomedicines and herbal medicines.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Extratos Vegetais/administração & dosagem , Animais , Humanos , Nanomedicina , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Distribuição Tecidual
8.
J Control Release ; 334: 178-187, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33895198

RESUMO

Mice are arguably the most important tool in the preclinical evaluation of liposomes; however, the effects of inter-strain physiological variabilities on in vivo performance of liposomes have been seriously overlooked. The present study validated that plasma proteins (PPs) and the capability of mononuclear phagocyte system (MPS) (typically expressed by phagocytosis rate, K) were mice strain-dependent. Physiological variabilities in PPs and the phagocytosis rate jointly contributed to the inter-strain inconsistency of pharmacokinetic (PK) profiles of liposomes. For the PPs sensitive liposomes (such as plain PEGylated liposomes and folic acid functionalized PEGylated liposomes), inter-strain variabilities in PK profiles could be calibrated using the corrected phagocytic rate (KC = K×(c × Ig)/(alb×apo)), where c, Ig, alb and apo were respective the total content of complement proteins, immunoglobulins, albumin and apolipoproteins. While for the PPs insensitive liposomes (e.g., cRGD functionalized liposomes), phagocytic rate could be directly used to calibrate inter-strain difference of liposome PK profiles. Our data also warn that the reciprocal interaction between payloads and organisms would be much more complicated than that between liposomes and organisms, thus independent investigation should be conducted for each individual therapeutic agent.


Assuntos
Lipossomos , Camundongos Endogâmicos , Fagocitose , Animais , Ácido Fólico , Camundongos , Sistema Fagocitário Mononuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA