Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Glob Chang Biol ; 30(1): e17155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273528

RESUMO

There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.


Assuntos
Pradaria , Herbivoria , Animais , Biomassa , Gado , Ecossistema
2.
Microb Ecol ; 86(4): 2293-2304, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37191674

RESUMO

Protists are essential components of soil microbial communities, mediating nutrient cycling and ecosystem functions in terrestrial ecosystems. However, their distribution patterns and driving factors, particularly, the relative importance of climate, plant and soil factors, remain largely unknown. This limits our understanding of soil protist roles in ecosystem functions and their responses to climate change. This is particularly a concern in dryland ecosystems where soil microbiomes are more important for ecosystem functions because plant diversity and growth are heavily constrained by environmental stresses. Here, we explored protist diversity and their driving factors in grassland soils on the Tibetan Plateau, which is a typical dryland region with yearly low temperatures. Soil protist diversity significantly decreased along the gradient of meadow, steppe, and desert. Soil protist diversity positively correlated with precipitation, plant biomass and soil nutrients, but these correlations were changed by grazing. Structural equation and random forest models demonstrated that precipitation dominated soil protist diversity directly and indirectly by influencing plant and soil factors. Soil protist community structure gradually shifted along meadow, steppe and desert, and was driven more by precipitation than by plant and soil factors. Soil protist community compositions were dominated by Cercozoa, Ciliophora and Chlorophyta. In particular, Ciliophora increased but Chlorophyta decreased in relative abundance along the gradient of meadow, steppe and desert. These results demonstrate that precipitation plays more important roles in driving soil protist diversity and community structure than plant and soil factors, suggesting that future precipitation change profoundly alters soil protist community and functions in dry grasslands.


Assuntos
Ecossistema , Microbiota , Pradaria , Solo/química , Biomassa , Plantas , Microbiologia do Solo
3.
Oecologia ; 199(3): 649-659, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35833986

RESUMO

We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs. negative for wetter (India) biomes, though were not significant for the remaining biomes. In contrast, only the India biome showed a significant relationship between water availability and evenness, which was negative. Globally, the richness-water availability relationship was hump-shaped, however, not significant for evenness. At the regional scale, a positive richness-evenness relationship was found for grassy biomes in India and Inner Mongolia, China. In contrast, this relationship was weakly concave-up globally. These results suggest that different, independent factors are determining patterns of species richness and evenness in grassy biomes, resulting in differing richness-evenness relationships at regional and global scales. As a consequence, richness and evenness may respond very differently across spatial gradients to anthropogenic changes, such as climate change.


Assuntos
Biodiversidade , Poaceae , China , Ecossistema , Água
4.
J Environ Manage ; 296: 113198, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237672

RESUMO

Climate change and human activities have profoundly changed the structure and functioning of alpine grassland ecosystems on the Tibetan Plateau, the most critical ecological safety shelter for Asia. However, it remains unclear to what degree human activity intensity has impacted the alpine grasslands of the Tibetan Plateau. Here we quantify human activity intensity on alpine grasslands of the Tibetan Plateau based on the relationship between actual and potential net primary production. We found that human activity intensity decreased by 16.1% from 2000 to 2017 across the alpine grasslands, which might be driven by recent ecological conservation policies, especially reductions in livestock numbers. Critical thresholds, which show marked grassland responses to different levels of human disturbances, were identified for each ecozone. The net primary production of dry grasslands on the western ecozones was more resistant to human disturbances but with lower resilience than other alpine grasslands on the plateau. Our findings are beneficial to design practical countermeasures to adapt to climate change and recover damaged grasslands on Tibetan Plateau.


Assuntos
Ecossistema , Pradaria , Mudança Climática , Atividades Humanas , Humanos , Tibet
5.
J Environ Manage ; 281: 111875, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33378737

RESUMO

Alpine grasslands on the Qinghai-Tibetan Plateau are sensitive and vulnerable to climate change and human activities. Climate warming and overgrazing have already caused degradation in a large fraction of alpine grasslands on this plateau. However, it remains unclear how human activities (mainly livestock grazing) regulates vegetation dynamics under climate change. Here, alpine grassland productivity (substituted with the normalized difference vegetation index, NDVI) is hypothesized to vary in a nonlinear trajectory to follow climate fluctuations and human disturbances. With generalized additive mixed modelling (GAMM) and residual-trend (RESTREND) analysis together, both magnitude and direction of climatic (in terms of temperature, precipitation, and radiation) and anthropogenic impacts on NDVI variation were examined across alpine meadows, steppes, and desert-steppes on the Qinghai-Tibetan Plateau. The results revealed that accelerating warming and greening, respectively, took place in 76.2% and 78.8% of alpine grasslands on the Qinghai-Tibetan Plateau. The relative importance of temperature, precipitation, and radiation impacts was comparable, between 20.4% and 24.8%, and combined to explain 66.2% of NDVI variance at the pixel scale. The human influence was strengthening and weakening, respectively, in 15.5% and 14.3% of grassland pixels, being slightly larger than any sole climatic variable across the entire plateau. Anthropogenic and climatic factors can be in opposite ways to affect alpine grasslands, even within the same grassland type, likely regulated by plant community assembly and species functional traits. Therefore, the underlying mechanisms of how plant functional diversity regulates nonlinear ecosystem response to climatic and anthropogenic stresses should be carefully explored in the future.


Assuntos
Ecossistema , Pradaria , Animais , Mudança Climática , Humanos , Dinâmica não Linear , Tibet
6.
J Exp Bot ; 71(14): 4159-4170, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32309855

RESUMO

Natural selection drives local adaptations of species to biotic or abiotic environmental stresses. As a result, adaptive phenotypic divergence can evolve among related species living in different habitats. However, the genetic foundation of this divergence process remains largely unknown. Two closely related alpine grass species, Stipa capillacea and Stipa purpurea, are distributed in different rainfall regions of northern Tibet. Here, we analyzed the drought tolerance of these two closely related Stipa species, and found that S. purpurea was more resistance to drought stress than S. capillacea. To further understand the genetic diversity behind their adaptation to drought environments, a comprehensive gene repertoire was generated using PacBio isoform and Illumina RNA sequencing technologies. Bioinformatics analyses revealed that differential transcripts were mainly enriched in the wax synthetic pathway, and a threonine residue at position 239 of WSD1 was identified as having undergone positive selection in S. purpurea. Using heterologous expression in the Saccharomyces cerevisiae mutant H1246, site-directed mutagenesis studies demonstrated that a positive selection site results in changes to the wax esters profile. This difference may play an important role in S. purpurea in response to drought conditions, indicating that S. purpurea has evolved specific strategies involving its wax biosynthetic pathway as part of its long-term adaptation to the Qinghai-Tibet Plateau.


Assuntos
Diacilglicerol O-Aciltransferase , Secas , Ésteres , Poaceae , Tibet
7.
J Environ Manage ; 231: 635-645, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390448

RESUMO

The biodiversity-productivity relationship is critical for better predicting ecosystem responses to climate change and human disturbance. However, it remains unclear about the effects of climate change, land use shifts, plant diversity, and their interactions on productivity partitioning above- and below-ground components in alpine grasslands on the Tibetan Plateau. To answer this question, we conducted field surveys at 33 grazed vs. fenced paired sites that are distributed across the alpine meadow, steppe, and desert-steppe zones on the northern Tibetan Plateau in early August of 2010-2013. Generalized additive models (GAMs) showed that aboveground net primary productivity (ANPP) linearly increased with growing season precipitation (GSP) while belowground net primary productivity (BNPP) decreased with growing season temperature (GST). Compared to grazed sites, short-term fencing did not alter the patterns of ANPP along climatic gradients but tended to decrease BNPP at moderate precipitation levels of 200 mm < GSP <450 mm. We also found that ANPP and BNPP linearly increased with species richness, ANPP decreased with Shannon diversity index, and BNPP did not correlate with the Shannon diversity index. Fencing did not alter the relationships between productivity components and plant diversity indices. Generalized additive mixed models furtherly confirmed that the interaction of localized plant diversity and climatic condition nonlinearly regulated productivity partitioning of alpine grasslands in this area. Finally, structural equation models (SEMs) revealed the direction and strength of causal links between biotic and abiotic variables within alpine grassland ecosystems. ANPP was controlled directly by GSP (0.53) and indirectly via species richness (0.41) and Shannon index (-0.12). In contrast, BNPP was influenced directly by GST (-0.43) and indirectly by GSP via species richness (0.05) and Shannon index (-0.02). Therefore, we recommend using a joint approach of GAMs and SEMs for better understanding mechanisms behind the relationship between biodiversity and ecosystem function under climate change and human disturbance.


Assuntos
Ecossistema , Pradaria , Biomassa , Mudança Climática , Humanos , Chuva , Tibet
8.
J Environ Manage ; 238: 352-359, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30856595

RESUMO

Forage-livestock balance is important for sustainable management of alpine grasslands under global change, but the robustness of diverse algorithms for assessing forage-livestock balance is still unclear. This study compiled long-term (2009-2014) field observations of aboveground biomass (AGB). Using climate and remote sensing data, we evaluated the inter-annual dynamics of the forage-livestock balance on the Northern Tibetan Plateau (NTP). Here, we assumed that AGB dynamics in fenced grasslands (AGBF) is only driven by climate change; whereas AGB dynamics in open grasslands grazed by livestock (AGBG) is driven by a combination of climate change and human activities. Thus, human-induced change in AGB (AGBH) could be estimated via the difference between AGBF and AGBG. Furthermore, differences in the temporal trends between AGBF and AGBH could indicate the state of forage-livestock balance, overgrazed or not, in alpine grasslands. Our results showed that the overall status of the forage-livestock balance from 2000 to 2006 was overgrazed owing to poor climatic conditions. Ecological projects and economic policies for alpine grassland conservation had not been implemented at that time, which also resulted in local overgrazing. From 2006 to 2014, the alpine grasslands in some areas were in a less-grazed state. We suggest that the livestock number could potentially increase in northern NTP and should be reduced or strictly controlled to maintain the balance between livestock and forage in the southern and southeast areas. In conclusion, the results of this study suggest that the evaluation of the forage-livestock balance in the NTP should include the local climatic conditions and make better use of grassland resources while ensuring ecological security.


Assuntos
Pradaria , Gado , Animais , Biomassa , Mudança Climática , Tibet
9.
J Environ Manage ; 210: 280-289, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407188

RESUMO

Anthropogenic activities have induced profound changes across the globe. Human appropriation of net primary production (HANPP) is a useful indicator for quantifying anthropogenic influences on natural ecosystems. We applied a detailed HANPP framework to the Tibet Autonomous Region of China for the period 1989-2015 and performed clustering analysis to explore county-level dynamics of HANPP components. The results indicated a continuous increase in HANPP per unit area from 10.3 g C/m2/yr in 1989 to 18.5 g C/m2/yr in 2008, with some fluctuation and a decline to 16.8 C/m2/yr in 2015. As a percentage of potential net primary production (NPPpot), HANPP increased from 6.9% to 13.5%. This rise was mainly driven by the commercialization of animal husbandry and by ecological conservation policies. Animal stocks dominated HANPP in Tibet in 1989, and by 2015 beef or crop production had become predominant in 30 of 73 counties. However, HANPP did not change uniformly across all locations. Changes were mainly concentrated in the south-central river valley area because of the growth in beef and crop production there. While in almost half of the 73 counties located in the northwestern regions, HANPP was dominated by sheep stocks and changed only slightly over the study period. These findings indicate that a comprehensive spatiotemporal analysis of HANPP components in Tibet provides deeper insights into changes in production and livelihood strategies of local residents, aligned with ecological conservation policies and economic development. Moreover, it unravels the complex impacts of human activities on alpine ecosystems, and indicates the need to optimize local ecosystem management and conservation policies.


Assuntos
Ecossistema , Atividades Humanas , Animais , China , Monitoramento Ambiental , Humanos , Rios , Ovinos , Tibet
10.
Environ Monit Assess ; 187(8): 491, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26148691

RESUMO

It is the most serious challenge to promote degraded grassland recovery currently facing the developing Tibetan Autonomous Region. We conducted field surveys of 75 grazing sites between 2009 and 2012 across the Northern Tibetan Plateau and described the spatial and climatic patterns of the occurrence of poisonous plants. Our results showed lower ratios of species richness (SprRatio), coverage (CovRatio), and biomass (BioRatio) of non-poisonous vs. poisonous plants in the semi-arid alpine steppe zone, where the growing season precipitation (GSP) is between 250 and 350 mm; however, this result is in contrast to the relatively wetter meadow (GSP >350 mm) and much drier desert-steppe (GSP <250 mm) communities. Results from generalized additive models (GAMs) further confirmed that precipitation is primarily responsible for the initially decreasing and then increasing tendency of compositional ratios of non-poisonous to poisonous species. The wide confidence bands at GSP <250 mm indicated that precipitation is not an effective indicator for predicting compositional changes in desert-steppe communities. When mean annual livestock grazing pressure was incorporated into the optimal GAMs, the model performance improved: the Akaike information criterion (AIC) decreased by 1.20 for SprRatio and 3.09 for BioRatio, and the deviance explained (R (2)) increased by 6.0% for SprRatio and 3.6% for BioRatio. Therefore, more detailed information on grazing disturbance (timing, frequency, and density) should be collected to disentangle the relative contribution of climate change and grazing activities to changes in community assembly and ecological functions of alpine grasslands on the Northern Tibetan Plateau.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/métodos , Plantas Tóxicas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Altitude , Biodiversidade , Biomassa , Clima Desértico , Modelos Teóricos , Estações do Ano , Especificidade da Espécie , Tibet
11.
Front Plant Sci ; 15: 1411839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006955

RESUMO

Herbivore-avoided plant patches are one of the initial characteristics of natural grassland degradation. These vegetation patches can intensify the spatial heterogeneity of soil nutrients within these grasslands. However, the effects of non-edible plant patches patches on the spatial heterogeneity of microorganisms have not been sufficiently studied in alpine meadows of the Qinghai-Tibetan Plateau, especially patches formed by herbaceous plants. To answer this question, soil nutrients, plant assembly, and microbial communities were measured inside, around, and outside of Artemisia smithii patches. These were 0 m (within the patch), 0-1 m (one meter from the edge of the patch), 1-2 m (two meters from the edge of the patch), 2-3 m (three meters from the edge of the patch), and >30 m (non-patch grassland more than thirty meters from the edge of the patch). Our results showed that A. smithii patches accumulated more aboveground biomass (AGB) within the patches (0 m), and formed fertile islands with the soil around the patches. Additionally, A. smithii patches increased soil bacterial diversity within (0 m) and around (0-1 m) the patches by primarily enriching copiotrophic bacteria (Actinobacteria), while the diversity of fungal communities increased mainly in the 0-1 m area but not within the patches. Bacterial community diversity was driven by pH, urease, nitrate nitrogen (NO3 --N), and microbial biomass carbon (MBC). The contents of soil water (SWC), soil organic matter (SOM), urease, NO3 --N, and MBC were the main factors influencing the diversity of the fungal community. This study elucidates the vegetation, nutrients, and microbial heterogeneity and their interrelationships, which are observed in fertile islands of herbivore-avoided plant patches in alpine meadows, and provides further insights into the spatial pattern of nutrients in patchy degraded grasslands.

12.
Environ Microbiol Rep ; 16(1): e13223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124298

RESUMO

Soil pathogens play important roles in shaping soil microbial diversity and controlling ecosystem functions. Though climate and local environmental factors and their influences on fungal pathogen communities have been examined separately, few studies explore the relative contributions of these factors. This is particularly crucial in eco-fragile regions, which are more sensitive to environmental changes. Herein we investigated the diversity and community structure of putative soil fungal pathogens in cold and dry grasslands on the Tibetan Plateau, using high-throughput sequencing. The results showed that steppe soils had the highest diversity of all pathogens and plant pathogens; contrastingly, meadow soils had the highest animal pathogen diversity. Structural equation modelling revealed that climate, plant, and soil had similar levels of influence on putative soil fungal pathogen diversity, with total effects ranging from 52% to 59% (all p < 0.001), with precipitation exhibiting a stronger direct effect than plant and soil factors. Putative soil fungal pathogen community structure gradually changed with desert, steppe, and meadow, and was primarily controlled by the interactions of climate, plant, and soil factors rather than by distinct factors individually. This finding contrasts with most studies of soil bacterial and fungal community structure, which generally report dominant roles of individual environmental factors.


Assuntos
Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , Plantas
13.
Adv Healthc Mater ; : e2401974, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132780

RESUMO

The poor implant-osseointegration under diabetic condition remains a challenge to be addressed urgently. Studies have confirmed that the diabetic pathological microenvironment is accompanied by excessive oxidative stress, imbalanced immune homeostasis, and persistent chronic inflammation, which seriously impairs the osteogenic process. Herein, a multifunctional bioactive interface with both anti-oxidative stress and immunomodulatory properties is constructed on titanium implants. Briefly, manganese dioxide nanosheets are coated onto mesoporous polydopamine nanoparticles loaded with carbon monoxide gas precursor, namely MnO2-CO@MPDA NPs, and then they are integrated on the titanium implant to obtain MCM-Ti. In the simulated diabetic microenvironment, under the action of MnO2 nanoenzymes, MCM-Ti can effectively eliminate intracellular reactive oxygen species while alleviating hypoxic state. Interestingly, the microenvironment mediates the responsive release of CO gas, which effectively drives macrophages toward M2 polarization, thereby ameliorating inflammatory response. The potential mechanism is that CO gas up-regulates the expression of heme oxygenase-1, further activating the Notch/Hes1/Stat3 signaling pathway. Furthermore, the conditioned medium derived from macrophages on MCM-Ti surface significantly enhances the osteogenic differentiation of BMSCs. In a type 2 diabetic rat model, MCM-Ti implant effectively alleviates the accompanying inflammation and enhances the osseointegration through the synergistic effects of resisting oxidative stress and remodeling immune homeostasis.

14.
Front Plant Sci ; 15: 1416221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253573

RESUMO

The timely and accurate acquisition of crop-growth information is a prerequisite for implementing intelligent crop-growth management, and portable multispectral imaging devices offer reliable tools for monitoring field-scale crop growth. To meet the demand for obtaining crop spectra information over a wide band range and to achieve the real-time interpretation of multiple growth characteristics, we developed a novel portable snapshot multispectral imaging crop-growth sensor (PSMICGS) based on the spectral sensing of crop growth. A wide-band co-optical path imaging system utilizing mosaic filter spectroscopy combined with dichroic mirror beam separation is designed to acquire crop spectra information over a wide band range and enhance the device's portability and integration. Additionally, a sensor information and crop growth monitoring model, coupled with a processor system based on an embedded control module, is developed to enable the real-time interpretation of the aboveground biomass (AGB) and leaf area index (LAI) of rice and wheat. Field experiments showed that the prediction models for rice AGB and LAI, constructed using the PSMICGS, had determination coefficients (R²) of 0.7 and root mean square error (RMSE) values of 1.611 t/ha and 1.051, respectively. For wheat, the AGB and LAI prediction models had R² values of 0.72 and 0.76, respectively, and RMSE values of 1.711 t/ha and 0.773, respectively. In summary, this research provides a foundational tool for monitoring field-scale crop growth, which is important for promoting high-quality and high-yield crops.

15.
ACS Nano ; 17(21): 21116-21133, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37843108

RESUMO

Traditional drug-based treatments for inflammatory bowel disease (IBD) have significant limitations due to their potential off-target systemic side-effects. Currently, there is a lack of understanding on how to effectively address excessive oxidative stress, dysregulated immune homeostasis, and microbiota dysbiosis within the IBD microenvironment. Herein, we introduce a nanotherapeutic approach, named LBL-CO@MPDA, for IBD treatment. LBL-CO@MPDA is an orally administered formulation that supplies carbon monoxide (CO) for therapeutic purposes. To create the LBL-CO@MPDA nanocomposite, we developed a layer by layer (LBL) self-assembly strategy where we coated chitosan/alginate polyelectrolytes onto the surface of CO prodrug-loaded mesoporous polydopamine nanoparticles (CO@MPDA). Benefiting from the negatively charged surface of the LBL coating, it allows for targeted accumulation of LBL-CO@MPDA specifically onto the positively charged inflamed colon lesions through electrostatic interactions. Furthermore, in the oxidative microenvironment of the inflamed colon, the nanotherapeutic system releases CO in a responsive manner. Interestingly, CO@MPDA ameliorates inflammatory conditions by MPDA-mediated ROS-scavenging and CO-mediated immunomodulation. CO-supplying activates heme oxygenase-1, leading to macrophage M2 polarization via the Notch/Hes1/Stat3 signaling pathway, while suppressing the inflammatory response by down-regulating the p38 MAPK and NF-κB (p50/p65) signaling pathways. In the mice model of dextran sulfate sodium (DSS)-induced IBD, LBL-CO@MPDA effectively reverses the pro-inflammatory microenvironment and restores gut barrier functions through multiple mechanisms, including scavenging oxidative stress, restoring immune homeostasis, and modulating the gut microbiota. Collectively, our findings highlight the promising potential of this innovative nanotherapeutic strategy for the targeted treatment of IBD.


Assuntos
Monóxido de Carbono , Doenças Inflamatórias Intestinais , Camundongos , Animais , Monóxido de Carbono/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colo/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL
16.
Sci Bull (Beijing) ; 68(17): 1928-1937, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517987

RESUMO

Structural information of grassland changes on the Tibetan Plateau is essential for understanding alterations in critical ecosystem functioning and their underlying drivers that may reflect environmental changes. However, such information at the regional scale is still lacking due to methodological limitations. Beyond remote sensing indicators only recognizing vegetation productivity, we utilized multivariate data fusion and deep learning to characterize formation-based plant community structure in alpine grasslands at the regional scale of the Tibetan Plateau for the first time and compared it with the earlier version of Vegetation Map of China for historical changes. Over the past 40 years, we revealed that (1) the proportion of alpine meadows in alpine grasslands increased from 50% to 69%, well-reflecting the warming and wetting trend; (2) dominances of Kobresia pygmaea and Stipa purpurea formations in alpine meadows and steppes were strengthened to 76% and 92%, respectively; (3) the climate factor mainly drove the distribution of Stipa purpurea formation, but not the recent distribution of Kobresia pygmaea formation that was likely shaped by human activities. Therefore, the underlying mechanisms of grassland changes over the past 40 years were considered to be formation dependent. Overall, the first exploration for structural information of plant community changes in this study not only provides a new perspective to understand drivers of grassland changes and their spatial heterogeneity at the regional scale of the Tibetan Plateau, but also innovates large-scale vegetation study paradigm.


Assuntos
Ecossistema , Pradaria , Humanos , Tibet , Mudança Climática , China
17.
Front Plant Sci ; 13: 1024954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570963

RESUMO

Introduction: Overgrazing and warming are thought to be responsible for the loss of species diversity, declined ecosystem productivity and soil nutrient availability of degraded grasslands on the Tibetan Plateau. Mineral elements in soils critically regulate plant individual's growth, performance, reproduction, and survival. However, it is still unclear whether plant species diversity and biomass production can be improved indirectly via the recovery of mineral element availability at topsoils of degraded grasslands, via grazing exclusion by fencing for years. Methods: To answer this question, we measured plant species richness, Shannow-Wiener index, aboveground biomass, and mineral element contents of Ca, Cu, Fe, Mg, Mn, Zn, K and P at the top-layer (0 - 10 cm) soils at 15 pairs of fenced vs grazed matched sites from alpine meadows (n = 5), alpine steppes (n = 6), and desert-steppes (n = 4) across North Tibet. Results: Our results showed that fencing only reduced the Shannon-Wiener index of alpine meadows, and did not alter aboveground biomass, species richness, and soil mineral contents within each grassland type, compared to adjacent open sites grazed by domestic livestock. Aboveground biomass first decreased and then increased along with the gradient of increasing Ca content but did not show any clear relationship with other mineral elements across the three different alpine grassland types. More than 45% of the variance in plant diversity indices and aboveground biomass across North Tibet can be explained by the sum precipitation during plant growing months. Structural equation modelling also confirmed that climatic variables could regulate biomass production directly and indirectly via soil mineral element (Ca) and plant diversity indices. Discussion: Overall, the community structure and biomass production of alpine grasslands across North Tibet was weakly affected by fencing, compared to the robst climatic control. Therefore, medium-term livestock exclusion by fencing might have limited contribution to the recovery of ecosystem structure and functions of degraded alpine grasslands.

18.
Front Plant Sci ; 13: 821717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310650

RESUMO

The number of wheat spikes per unit area is one of the most important agronomic traits associated with wheat yield. However, quick and accurate detection for the counting of wheat spikes faces persistent challenges due to the complexity of wheat field conditions. This work has trained a RetinaNet (SpikeRetinaNet) based on several optimizations to detect and count wheat spikes efficiently. This RetinaNet consists of several improvements. First, a weighted bidirectional feature pyramid network (BiFPN) was introduced into the feature pyramid network (FPN) of RetinaNet, which could fuse multiscale features to recognize wheat spikes in different varieties and complicated environments. Then, to detect objects more efficiently, focal loss and attention modules were added. Finally, soft non-maximum suppression (Soft-NMS) was used to solve the occlusion problem. Based on these improvements, the new network detector was created and tested on the Global Wheat Head Detection (GWHD) dataset supplemented with wheat-wheatgrass spike detection (WSD) images. The WSD images were supplemented with new varieties of wheat, which makes the mixed dataset richer in species. The method of this study achieved 0.9262 for mAP50, which improved by 5.59, 49.06, 2.79, 1.35, and 7.26% compared to the state-of-the-art RetinaNet, single-shot multiBox detector (SSD), You Only Look Once version3 (Yolov3), You Only Look Once version4 (Yolov4), and faster region-based convolutional neural network (Faster-RCNN), respectively. In addition, the counting accuracy reached 0.9288, which was improved from other methods as well. Our implementation code and partial validation data are available at https://github.com/wujians122/The-Wheat-Spikes-Detecting-and-Counting.

19.
Front Plant Sci ; 13: 900722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769289

RESUMO

Nitrogen (N) deposition can affect the global ecosystem carbon balance. However, how plant community assembly regulates the ecosystem carbon exchange in response to the N deposition remains largely unclear, especially in alpine meadows. In this study, we conducted a manipulative experiment to examine the impacts of N (ammonium nitrate) addition on ecosystem carbon dioxide (CO2) exchange by changing the plant community assembly and soil properties at an alpine meadow site on the Qinghai-Tibetan Plateau from 2014 to 2018. The N-addition treatments were N0, N7, N20, and N40 (0, 7, 20, and 40 kg N ha-1year-1) during the plant growing season. The net ecosystem CO2 exchange (NEE), gross ecosystem productivity (GEP), and ecosystem respiration (ER) were measured by a static chamber method. Our results showed that the growing-season NEE, ER and GEP increased gradually over time with increasing N-addition rates. On average, the NEE increased significantly by 55.6 and 65.2% in N20 and N40, respectively (p < 0.05). Nitrogen addition also increased forage grass biomass (GB, including sedge and Gramineae) by 74.3 and 122.9% and forb biomass (FB) by 73.4 and 51.4% in N20 and N40, respectively (p < 0.05). There were positive correlations between CO2 fluxes (NEE and GEP) and GB (p < 0.01), and the ER was positively correlated with functional group biomass (GB and FB) and soil available N content (NO3 --N and NH4 +-N) (p < 0.01). The N-induced shift in the plant community assembly was primarily responsible for the increase in NEE. The increase in GB mainly contributed to the N stimulation of NEE, and FB and the soil available N content had positive effects on ER in response to N addition. Our results highlight that the plant community assembly is critical in regulating the ecosystem carbon exchange response to the N deposition in alpine ecosystems.

20.
PeerJ ; 10: e13151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35539011

RESUMO

The interaction of warming and soil texture on responsiveness of the key soil processes i.e. organic carbon (C) fractions, soil microbes, extracellular enzymes and CO2 emissions remains largely unknown. Global warming raises the relevant question of how different soil processes will respond in near future, and what will be the likely regulatory role of texture? To bridge this gap, this work applied the laboratory incubation method to investigate the effects of temperature changes (10-50 °C) on dynamics of labile, recalcitrant and stable C fractions, soil microbes, microbial biomass, activities of extracellular enzymes and CO2 emissions in sandy and clayey textured soils. The role of texture (sandy and clayey) in the mitigation of temperature effect was also investigated. The results revealed that the temperature sensitivity of C fractions and extracellular enzymes was in the order recalcitrant C fractions > stable C fractions > labile C fractions and oxidative enzymes > hydrolytic enzymes. While temperature sensitivity of soil microbes and biomass was in the order bacteria > actinomycetes > fungi ≈ microbial biomass C (MBC) > microbial biomass N (MBN) > microbial biomass N (MBP). Conversely, the temperature effect and sensitivity of all key soil processes including CO2 emissions were significantly (P < 0.05) higher in sandy than clayey textured soil. Results confirmed that under the scenario of global warming and climate change, soils which are sandy in nature are more susceptible to temperature increase and prone to become the CO2-C sources. It was revealed that clayey texture played an important role in mitigating and easing off the undue temperature influence, hence, the sensitivity of key soil processes.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Carbono , Temperatura , Microbiologia do Solo , Argila , Areia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA