Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086134

RESUMO

Immune checkpoint blockade has been used to treat breast cancer, but the clinical responses remain relatively poor. We have used the CRISPR-Cas9 kinome knockout library consisting of 763 kinase genes to identify tumor-intrinsic kinases conferring resistance to anti-PD-1 immune checkpoint blockade. We have identified the CDC42BPB kinase as a potential target to overcome the resistance to anti-PD-1 immune checkpoint blockade immunotherapy. We found that CDC42BPB is highly expressed in breast cancer patients who are non-responsive to immunotherapy. Furthermore, a small-molecule pharmacological inhibitor, BDP5290, which targets CDC42BPB, synergized with anti-PD-1 and enhanced tumor cell killing by promoting T cell proliferation in both in vitro and in vivo assays. Moreover, anti-PD-1-resistant breast cancer cells showed higher expression of CDC42BPB, and its inhibition rendered the resistant cells more susceptible to T cell killing in the presence of anti-PD-1. We also found that CDC42BPB phosphorylated AURKA, which in turn upregulated PD-L1 through cMYC. Our results have revealed a robust link between tumor-intrinsic kinase and immunotherapy resistance and have provided a rationale for a unique combination therapy of CDC42BPB inhibition and anti-PD-1 immunotherapy for breast cancer.

2.
BMC Pulm Med ; 24(1): 309, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956553

RESUMO

BACKGROUND: Treatment of non-small lung cancer (NSCLC) has evolved in recent years, benefiting from advances in immunotherapy and targeted therapy. However, limited biomarkers exist to assist clinicians and patients in selecting the most effective, personalized treatment strategies. Targeted next-generation sequencing-based genomic profiling has become routine in cancer treatment and generated crucial clinicogenomic data over the last decade. This has made the development of mutational biomarkers for drug response possible. METHODS: To investigate the association between a patient's responses to a specific somatic mutation treatment, we analyzed the NSCLC GENIE BPC cohort, which includes 2,004 tumor samples from 1,846 patients. RESULTS: We identified somatic mutation signatures associated with response to immunotherapy and chemotherapy, including carboplatin-, cisplatin-, pemetrexed- or docetaxel-based chemotherapy. The prediction power of the chemotherapy-associated signature was significantly affected by epidermal growth factor receptor (EGFR) mutation status. Therefore, we developed an EGFR wild-type-specific mutation signature for chemotherapy selection. CONCLUSION: Our treatment-specific gene signatures will assist clinicians and patients in selecting from multiple treatment options.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Receptores ErbB/genética , Idoso , Prognóstico , Estudos de Coortes , Biomarcadores Tumorais/genética , Imunoterapia , Carboplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pemetrexede/uso terapêutico , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Antineoplásicos/uso terapêutico
3.
Breast Cancer Res ; 24(1): 6, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078502

RESUMO

BACKGROUND: Ductal carcinoma in situ (DCIS) of breast is the noninvasive lesion that has propensity to progress to the malignant form. At present, it is still unknown which lesions can potentially progress to invasive forms. In this study, we aimed to identify key lncRNAs involved in DCIS growth. METHODS: We employ disease-related lncProfiler array to identify IPW in specimens of DCIS and matching control samples and validate the observations in three DCIS-non-tumorigenic cell lines. Further, we examine the mechanism of IPW action and the downstream signaling in in vitro and in vivo assays. Importantly, we screened a library containing 390 natural compounds to identify candidate compound selectively inhibiting IPW low DCIS cells. RESULTS: We identified lncRNA IPW as a novel tumor suppressor critical for inhibiting DCIS growth. Ectopic expression of IPW in DCIS cells strongly inhibited cell proliferation, colony formation and cell cycle progression while silencing IPW in primary breast cells promoted their growth. Additionally, orthotropic implantation of cells with ectopic expression of IPW exhibited decreased tumor growth in vivo. Mechanistically, IPW epigenetically enhanced miR-29c expression by promoting H3K4me3 enrichment in its promoter region. Furthermore, we identified that miR-29c negatively regulated a stemness promoting gene, ID2, and diminished self-renewal ability of DCIS cells. Importantly, we screened a library containing 390 natural compounds and identified toyocamycin as a compound that selectively inhibited the growth of DCIS with low expression of IPW, while it did not affect DCIS with high IPW expression. Toyocamycin also suppressed genes associated with self-renewal ability and inhibited DCIS growth in vivo. CONCLUSION: Our findings revealed a critical role of the IPW-miR-29c-ID2 axis in DCIS formation and suggested potential clinical use of toyocamycin for the treatment of DCIS.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , MicroRNAs , RNA Longo não Codificante , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/tratamento farmacológico , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
4.
Breast Cancer Res ; 23(1): 35, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736709

RESUMO

BACKGROUND: Brain metastasis of breast cancer exhibits exceedingly poor prognosis, and both triple negative (TN) and Her2+ subtypes have the highest incidence of brain metastasis. Although estrogen blockers are considered to be ineffective for their treatment, recent evidence indicates that estrogen blockade using tamoxifen showed certain efficacy. However, how estrogen affects brain metastasis of triple negative breast cancer (TNBC) remains elusive. METHODS: To examine the effect of estrogen on brain metastasis progression, nude mice were implanted with brain metastatic cells and treated with either estrogen supplement, tamoxifen, or ovariectomy for estrogen depletion. For clinical validation study, brain metastasis specimens from pre- and post-menopause breast cancer patients were examined for microglia polarization by immunohistochemistry. To examine the estrogen-induced M2 microglia polarization, microglia cells were treated with estrogen, and the M1/M2 microglia polarization was detected by qRT-PCR and FACS. The estrogen receptor-deficient brain metastatic cells, SkBrM and 231BrM, were treated with conditioned medium (CM) derived from microglia that were treated with estrogen in the presence or absence of tamoxifen. The effect of microglia-derived CM on tumor cells was examined by colony formation assay and sphere forming ability. RESULTS: We found that M2 microglia were abundantly infiltrated in brain metastasis of pre-menopausal breast cancer patients. A similar observation was made in vivo, when we treated mice systemically with estrogen. Blocking of estrogen signaling either by tamoxifen treatment or surgical resection of mice ovaries suppressed M2 microglial polarization and decreased the secretion of C-C motif chemokine ligand 5, resulting in suppression of brain metastasis. The estrogen modulation also suppressed stemness in TNBC cells in vitro. Importantly, estrogen enhanced the expression of signal regulatory protein α on microglia and restricted their phagocytic ability. CONCLUSIONS: Our results indicate that estrogen promotes brain metastasis by skewing polarity of M2 microglia and inhibiting their phagocytic ability, while tamoxifen suppresses brain metastasis by blocking the M2 polarization of microglia and increasing their anti-tumor phagocytic ability. Our results also highlight a potential therapeutic utility of tamoxifen for treating brain metastasis of hormone receptor-deficient breast cancer.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Microglia/imunologia , Receptores de Estrogênio/deficiência , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
5.
Biochim Biophys Acta Rev Cancer ; 1868(2): 538-563, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054476

RESUMO

Extracellular vesicles (EVs) have emerged as important players of cancer initiation and progression through cell-cell communication. They have been recognized as critical mediators of extracellular communications, which promote transformation, growth invasion, and drug-resistance of cancer cells. Interestingly, the secretion and uptake of EVs are regulated in a more controlled manner than previously anticipated. EVs are classified into three groups, (i) exosomes, (ii) microvesicles (MVs), and (iii) apoptotic bodies (ABs), based on their sizes and origins, and novel technologies to isolate and distinguish these EVs are evolving. The biologically functional molecules harbored in these EVs, including nucleic acids, lipids, and proteins, have been shown to induce key signaling pathways in both tumor and tumor microenvironment (TME) cells for exacerbating tumor development. While tumor cell-derived EVs are capable of reprogramming stromal cells to generate a proper tumor cell niche, stromal-derived EVs profoundly affect the growth, resistance, and stem cell properties of tumor cells. This review summarizes and discusses these reciprocal communications through EVs in different types of cancers. Further understanding of the pathophysiological roles of different EVs in tumor progression is expected to lead to the discovery of novel biomarkers in liquid biopsy and development of tumor specific therapeutics. This review will also discuss the translational aspects of EVs and therapeutic opportunities of utilizing EVs in different cancer types.


Assuntos
Vesículas Extracelulares/fisiologia , Neoplasias/etiologia , Animais , Biomarcadores , Comunicação Celular , Separação Celular , Exoma/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/análise , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transporte Proteico , Transdução de Sinais/fisiologia , Microambiente Tumoral
6.
Breast Cancer Res Treat ; 175(1): 77-90, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30725231

RESUMO

PURPOSE: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer which could progress to or recur as invasive breast cancer. The underlying molecular mechanism of DCIS progression is yet poorly understood, and appropriate biomarkers to distinguish benign form of DCIS from potentially invasive tumor are urgently needed. METHODS: To identify the key regulators of DCIS progression, we performed gene-expression analysis of syngeneic breast cancer cell lines MCF10A, DCIS.com, and MCF10CA and cross-referenced the targets with patient cohort data. RESULTS: We identified ID2 as a critical gene for DCIS initiation and found that ID2 promoted DCIS formation by enhancing cancer stemness of pre-malignant cells. ID2 also plays a pivotal role in survival of the aggressive cancer cells. In addition, we identified INHBA and GJB2 as key regulators for the transition of benign DCIS to aggressive phenotype. These two genes regulate migration, colonization, and stemness of invasive cancer cells. Upregulation of ID2 and GJB2 predicts poor prognosis after breast-conserving surgery. Finally, we found a natural compound Helichrysetin as ID2 inhibitor which suppresses DCIS formation in vitro and in vivo. CONCLUSION: Our results indicate that ID2 is a key driver of DCIS formation and therefore is considered to be a potential target for prevention of DCIS, while INHBA and GJB2 play vital roles in progression of DCIS to IDC and they may serve as potential prognosis markers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Conexinas/genética , Proteína 2 Inibidora de Diferenciação/genética , Células-Tronco Neoplásicas/metabolismo , Regiões Promotoras Genéticas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Proliferação de Células , Chalcona/análogos & derivados , Chalcona/química , Chalcona/farmacologia , Conexina 26 , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Estadiamento de Neoplasias , Prognóstico
7.
J Biol Chem ; 291(37): 19351-63, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422817

RESUMO

Prostate cancer is known to frequently recur in bone; however, how dormant cells switch its phenotype leading to recurrent tumor remains poorly understood. We have isolated two syngeneic cell lines (indolent and aggressive) through in vivo selection by implanting PC3mm stem-like cells into tibial bones. We found that indolent cells retained the dormant phenotype, whereas aggressive cells grew rapidly in bone in vivo, and the growth rates of both cells in culture were similar, suggesting a role of the tumor microenvironment in the regulation of dormancy and recurrence. Indolent cells were found to secrete a high level of secreted protein acidic and rich in cysteine (SPARC), which significantly stimulated the expression of BMP7 in bone marrow stromal cells. The secreted BMP7 then kept cancer cells in a dormant state by inducing senescence, reducing "stemness," and activating dormancy-associated p38 MAPK signaling and p21 expression in cancer cells. Importantly, we found that SPARC was epigenetically silenced in aggressive cells by promoter methylation, but 5-azacytidine treatment reactivated the expression. Furthermore, high SPARC promoter methylation negatively correlated with disease-free survival of prostate cancer patients. We also found that the COX2 inhibitor NS398 down-regulated DNMTs and increased expression of SPARC, which led to tumor growth suppression in bone in vivo These findings suggest that SPARC plays a key role in maintaining the dormancy of prostate cancer cells in the bone microenvironment.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proteínas de Neoplasias/metabolismo , Osteonectina/metabolismo , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Animais , Azacitidina/farmacologia , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Osteonectina/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Biol Chem ; 290(15): 9842-54, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25691572

RESUMO

Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Ciclo-Oxigenase 2/genética , Metaloproteinase 1 da Matriz/genética , Transdução de Sinais/genética , Animais , Barreira Hematoencefálica/metabolismo , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Transplante Heterólogo
9.
Oncogene ; 43(5): 319-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030790

RESUMO

Dendritic cells (DCs) play critical roles in recognizing and presenting antigens to T cells. They secrete dendritic cell-derived extracellular vesicles (DC-sEVs), which could mimic the function of DCs. Therefore, we explore the possibility of using DC-sEVs as a potential personalized vaccine in this study. We compared the efficacy of DCs and DC-sEVs on stimulating the immune system to target breast cancer cells and found that DC-sEVs had significantly more MHC molecules on the surface when compared to the parental DCs. In our in vivo and in vitro testing, Dc-sEVs showed significant advantages over DCs, regarding efficacy, safety, storage, and potential delivery advantages. DC-sEVs were able to suppress the growth of immune-cold breast tumors, while DCs failed to do so. These results indicate the strong potential utility of DC-sEVs as a personalized immunotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/terapia , Células Dendríticas , Linfócitos T , Imunoterapia/métodos
10.
Biomaterials ; 311: 122710, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39053036

RESUMO

Low-expression antigens, especially neoantigens, pose a significant challenge in immunotherapy for low immunogenicity pancreatic cancer. Increasing the tumor mutation burden is crucial to enhance the expression of tumor antigens and improve tumor immunogenicity. However, the incomplete intervention in DNA stability hampers effective elevation of the tumor mutation burden, thus reducing the probability of neoantigen. To address this issue, we have developed a novel nano-regulator that intervenes in the DNA stability of tumor cells, thereby enhancing tumor mutations. This nano-regulator comprises metal-organic frameworks (MOFs) encapsulating DNA damage agent doxorubicin and DNA damage repair inhibitor siRNA-ATR, enabling simultaneous induction of DNA mutations and inhibition of their repair. Importantly, this regulator, named as MOFDOX&siATR, can modulate the tumor gene expression profile, induce the production of neoantigens of Atp8b1, and enhance the immunogenicity of pancreatic cancer. The characteristics of DNA stability intervention by MOFDOX&siATR hold promise for augmenting the immune response in low immunogenic tumors, making it a potential nanomedicine for the treatment of pancreatic cancer.


Assuntos
Antígenos de Neoplasias , Dano ao DNA , Imunoterapia , Neoplasias Pancreáticas , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Humanos , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Estruturas Metalorgânicas/química , RNA Interferente Pequeno , Camundongos
11.
J Mater Chem B ; 11(15): 3273-3294, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36928915

RESUMO

Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug. In this review, the advances in delivery systems and applications as therapeutic agents for nanoscale MOF-based materials are summarized. The challenges of MOFs in clinical translation and the future directions in the field of MOFs therapy are also discussed. We hope that more researchers will focus their attention on advancing and translating MOF-based nanodrugs into pre-clinical and clinical applications.


Assuntos
Estruturas Metalorgânicas , Nanomedicina , Sistemas de Liberação de Medicamentos , Metais , Porosidade
12.
Sci Adv ; 9(17): eade0625, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126558

RESUMO

Breast cancer has been shown to be resistant to immunotherapies. To overcome this challenge, we developed an active immunotherapy for personalized treatment based on a smart nanovesicle. This is achieved by anchoring membrane-bound bioactive interleukin 2 (IL2) and enriching T cell-promoting costimulatory factors on the surface of the dendritic cell-derived small extracellular vesicles. This nanovesicle also displays major histocompatibility complex-bound antigens inherited from tumor lysate-pulsed dendritic cell. When administrated, the surface-bound IL2 is able to guide the nanovesicle to lymphoid organs and activate the IL2 receptor on lymphocytes. Furthermore, it is able to perform antigen presentation in the replacement of professional antigen-presenting cells. This nanovesicle, named IL2-ep13nsEV, induced a strong immune reaction to rescue 50% of the mice in our humanized patient-derived xenografts, sensitized cancer cells to immune checkpoint inhibitor treatment, and prevented the recurrence of resected tumors. This paradigm presents a feasible strategy for the treatment and prevention of metastatic breast cancer.


Assuntos
Interleucina-2 , Neoplasias , Humanos , Animais , Camundongos , Imunoterapia , Neoplasias/terapia , Linfócitos T , Imunoterapia Ativa
13.
Oncogene ; 41(22): 3079-3092, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461327

RESUMO

Smoking is associated with lung cancer and has a profound impact on tumor immunity. Nicotine, the addictive and non-carcinogenic smoke component, influences various brain cells and the immune system. However, how long-term use of nicotine affects brain metastases is poorly understood. We, therefore, examined the mechanism by which nicotine promotes lung cancer brain metastasis. In this study, we conducted a retrospective analysis of 810 lung cancer patients with smoking history and assessed brain metastasis. We found that current smoker's lung cancer patients have significantly higher brain metastatic incidence compared to the never smokers. We also found that chronic nicotine exposure recruited STAT3-activated N2-neutrophils within the brain pre-metastatic niche and secreted exosomal miR-4466 which promoted stemness and metabolic switching via SKI/SOX2/CPT1A axis in the tumor cells in the brain thereby enabling metastasis. Importantly, exosomal miR-4466 levels were found to be elevated in serum/urine of cancer-free subjects with a smoking history and promote tumor growth in vivo, suggesting that exosomal miR-4466 may serve as a promising prognostic biomarker for predicting increased risk of metastatic disease among smoker(s). Our findings suggest a novel pro-metastatic role of nicotine-induced N2-neutrophils in the progression of brain metastasis. We also demonstrated that inhibiting nicotine-induced STAT3-mediated neutrophil polarization effectively abrogated brain metastasis in vivo. Our results revealed a novel mechanistic insight on how chronic nicotine exposure contributes to worse clinical outcome of metastatic lung cancer and implicated the risk of using nicotine gateway for smoking cessation in cancer patients.


Assuntos
Neoplasias Encefálicas , Exossomos , Neoplasias Pulmonares , MicroRNAs , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica/patologia , Neutrófilos/patologia , Nicotina/efeitos adversos , Estudos Retrospectivos
14.
Nat Commun ; 13(1): 7734, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517516

RESUMO

Breast cancer displays disparities in mortality between African Americans and Caucasian Americans. However, the exact molecular mechanisms remain elusive. Here, we identify miR-1304-3p as the most upregulated microRNA in African American patients. Importantly, its expression significantly correlates with poor progression-free survival in African American patients. Ectopic expression of miR-1304 promotes tumor progression in vivo. Exosomal miR-1304-3p activates cancer-associated adipocytes that release lipids and enhance cancer cell growth. Moreover, we identify the anti-adipogenic gene GATA2 as the target of miR-1304-3p. Notably, a single nucleotide polymorphism (SNP) located in the miR-1304 stem-loop region shows a significant difference in frequencies of the G allele between African and Caucasian American groups, which promotes the maturation of miR-1304-3p. Therefore, our results reveal a mechanism of the disparity in breast cancer progression and suggest a potential utility of miR-1304-3p and the associated SNP as biomarkers for predicting the outcome of African American patients.


Assuntos
Adipócitos , Negro ou Afro-Americano , Neoplasias da Mama , Exossomos , MicroRNAs , Feminino , Humanos , Adipócitos/metabolismo , Negro ou Afro-Americano/genética , Neoplasias da Mama/etnologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo
15.
Front Pharmacol ; 12: 630896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995029

RESUMO

Background: Viral myocarditis (VMC) is a common emergency of cardiovascular disease. Current treatment for VMC includes the prohibition of exercise plus supportive and symptomatic treatment, given the lack of specific antiviral therapeutic options and insufficient evidence for the use of novel immunosuppressive therapies. Trimetazidine, a drug used to improve myocardial energy metabolism, is frequently used for the treatment of viral myocarditis. In China, Chinese herbal injections (CHIs) are often used in combination with trimetazidine. Therefore, we evaluate the efficacy and safety of CHI combined with trimetazidine in the treatment of VMC through the method of network meta-analysis. Methods: We searched PubMed, the Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang Database, Chinese Scientific Journals Full-text Database (VIP), and China Biology Medicine Database (CBM) databases from inception to September 1, 2020, to identify eligible randomized controlled trials. The Cochrane risk of bias tool was used to assess the risk of bias among selected studies and the Stata 16.0 software was used to perform the network meta-analysis. Results: A total of 29 studies were included, representing data from 2,687 patients. The effectiveness rate, level of myocardial injury marker, and the adverse reaction rate were evaluated. Compared with conventional treatment or conventional treatment combined with trimetazidine, CHIs combined with trimetazidine appeared to have a better therapeutic effect, with higher effectiveness rate and better reduction of the levels of creatine kinase, creatine kinase-MB, and lactate dehydrogenase. Based on surface under the cumulative ranking, Shenmai injection combined with trimetazidine appeared to be superior in terms of effective rate, while Astragalus injection or Salviae miltiorrhizae and ligustrazine hydrochloride injection combined with trimetazidine appeared most effective in reducing myocardial injury markers. There was no significant difference in safety between the interventions. However, a lack of safety monitoring in some selected studies meant that the safety of some interventions could not be fully evaluated. Conclusion: CHIs combined with trimetazidine may have therapeutic value in the treatment of viral myocarditis, and Shenmai injection, Astragalus injection, and Salviae miltiorrhizae and ligustrazine hydrochloride injection may represent the most effective CHIs. Further clinical investigation is required to confirm these results.

16.
Nat Commun ; 12(1): 474, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473115

RESUMO

Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients.


Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Metástase Neoplásica , Neutrófilos/metabolismo , Nicotina/efeitos adversos , Animais , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lipocalina-2/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica/genética , Infiltração de Neutrófilos/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fumar
17.
Cancer Res ; 81(11): 3008-3021, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446575

RESUMO

Ethnicity is considered to be one of the major risk factors in certain subtypes of breast cancer. However, the mechanism of this racial disparity remains poorly understood. Here, we demonstrate that SOS1, a key regulator of Ras pathway, is highly expressed in African-American (AA) patients with breast cancer compared with Caucasian-American patients. Because of the higher obesity rate in AA women, increased levels of SOS1 facilitated signal transduction of the c-Met pathway, which was highly activated in AA patients with breast cancer via hepatocyte growth factor secreted from adipocytes. Elevated expression of SOS1 also enhanced cancer stemness through upregulation of PTTG1 and promoted M2 polarization of macrophages by CCL2 in metastatic sites. SOS1 was epigenetically regulated by a super-enhancer identified by H3K27ac in AA patients. Knockout of the super-enhancer by CRISPR in AA cell lines significantly reduced SOS1 expression. Furthermore, SOS1 was posttranscriptionally regulated by miR-483 whose expression is reduced in AA patients through histone trimethylation (H3K27me3) on its promoter. The natural compound, taxifolin, suppressed signaling transduction of SOS1 by blocking the interaction between SOS1 and Grb2, suggesting a potential utility of this compound as a therapeutic agent for AA patients with breast cancer. SIGNIFICANCE: These findings elucidate the signaling network of SOS1-mediated metastasis in African-American patients, from the epigenetic upregulation of SOS1 to the identification of taxifolin as a potential therapeutic strategy against SOS1-driven tumor progression.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Neoplasias da Mama/patologia , Epigênese Genética , Neoplasias Pulmonares/secundário , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteína SOS1/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Prognóstico , Proteínas Proto-Oncogênicas c-met/genética , Quercetina/análogos & derivados , Quercetina/farmacologia , Proteína SOS1/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncogene ; 40(5): 1012-1026, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323968

RESUMO

Prostate cancer is one of the leading causes of mortality in men. The major cause of death in prostate cancer patients can be attributed to metastatic spread of disease or tumor recurrence after initial treatment. Prostate tumors are known to remain undetected or dormant for a long period of time before they progress locoregionally or at distant sites as overt tumors. However, the molecular mechanism of dormancy is yet poorly understood. In this study, we performed a differential gene expression analysis and identified a gene, Regucalcin (RGN), which promotes dormancy of prostate cancer. We found that cancer patients expressing higher level of RGN showed significantly longer recurrence-free and overall- survival. Using a doxycycline-inducible RGN expression system, we showed that ectopic expression of RGN in prostate tumor cells induced dormancy in vivo, while following suppression of RGN triggered recurrence of tumor growth. On the other hand, silencing RGN in LNCap cells promoted its outgrowth in the tibia of mice. Importantly, RGN promoted multiple known hallmarks of tumor dormancy including activation of p38 MAPK, decrease in Erk signaling and inhibition of FOXM1 expression. Furthermore, we found that RGN significantly suppressed angiogenesis by increasing secretory miR-23c level in the exosomes. Intriguingly, FOXM1 was found to negatively regulate miR-23c expression in prostate cancer. In addition, we identified 11 RGN downstream target genes that independently predicted longer recurrence-free survival in patients. We found that expression of these genes was regulated by FOXM1 and/or p38 MAPK. These findings suggest a critical role of RGN in prostate cancer dormancy, and the utility of RGN signaling and exosomal miR-23c as biomarkers for predicting recurrence.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteína Forkhead Box M1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proliferação de Células/genética , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Nat Commun ; 12(1): 5196, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465793

RESUMO

Bone metastasis is an incurable complication of breast cancer. In advanced stages, patients with estrogen-positive tumors experience a significantly higher incidence of bone metastasis (>87%) compared to estrogen-negative patients (<56%). To understand the mechanism of this bone-tropism of ER+ tumor, and to identify liquid biopsy biomarkers for patients with high risk of bone metastasis, the secreted extracellular vesicles and cytokines from bone-tropic breast cancer cells are examined in this study. Both exosomal miR-19a and Integrin-Binding Sialoprotein (IBSP) are found to be significantly upregulated and secreted from bone-tropic ER+ breast cancer cells, increasing their levels in the circulation of patients. IBSP is found to attract osteoclast cells and create an osteoclast-enriched environment in the bone, assisting the delivery of exosomal miR-19a to osteoclast to induce osteoclastogenesis. Our findings reveal a mechanism by which ER+ breast cancer cells create a microenvironment favorable for colonization in the bone. These two secreted factors can also serve as effective biomarkers for ER+ breast cancer to predict their risks of bone metastasis. Furthermore, our screening of a natural compound library identifies chlorogenic acid as a potent inhibitor for IBSP-receptor binding to suppress bone metastasis of ER+ tumor, suggesting its preventive use for bone recurrence in ER+ patients.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Sialoproteína de Ligação à Integrina/metabolismo , MicroRNAs/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Exossomos/genética , Feminino , Humanos , Sialoproteína de Ligação à Integrina/genética , Camundongos , Camundongos Knockout , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Osteoclastos/metabolismo , Receptores de Estrogênio/metabolismo
20.
J Exp Med ; 217(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32496556

RESUMO

Up to 40% of lung cancer patients develop brain metastasis, and the median survival of these patients remains less than 6 months. Smoking is associated with lung cancer. However, how smoking impacts the development of brain metastasis remains elusive. We examined 281 lung cancer patients with distant metastasis and found that smokers exhibited a significantly high incidence of brain metastasis. We found that nicotine enhanced brain metastasis, while a depletion of microglia suppressed this effect in vivo. Nicotine skewed the polarity of microglia to the M2 phenotype, thereby increasing the secretion of IGF-1 and CCL20, which promoted tumor progression and stemness. Importantly, nicotine enhanced the expression of SIRPα in microglia and restricted their phagocytic ability. We also identified a compound, parthenolide, that suppressed brain metastasis by blocking M2 polarization. Our results indicate that nicotine promotes brain metastasis by skewing the polarity of M2 microglia, which enhances metastatic tumor growth. Our results also highlight a potential risk of using nicotine for tobacco cessation.


Assuntos
Neoplasias Encefálicas , Imunidade Inata/efeitos dos fármacos , Neoplasias Pulmonares , Microglia/imunologia , Nicotina/efeitos adversos , Agentes de Cessação do Hábito de Fumar/efeitos adversos , Animais , Antígenos de Diferenciação/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Quimiocina CCL20/imunologia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microglia/patologia , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Nicotina/farmacologia , Receptores Imunológicos/imunologia , Agentes de Cessação do Hábito de Fumar/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA