Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630172

RESUMO

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Assuntos
Albinismo , Perfilação da Expressão Gênica , Temperatura , Temperatura Baixa , Clorofila
2.
Plant Cell Environ ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087790

RESUMO

Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.

3.
Plant Physiol Biochem ; 207: 108341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266557

RESUMO

Low temperature is one of the most important environmental factors limiting tea plants' geographic distribution and severely affects spring tea's yield and quality. Circadian components contribute to plant responses to low temperatures; however, comparatively little is known about these components in tea plants. In this study, we identified a core clock component the LATE ELONGATED HYPOCOTYL, CsLHY, which is mainly expressed in tea plants' mature leaves, flowers, and roots. Notably, CsLHY maintained its circadian rhythmicity of expression in summer, but was disrupted in winter and held a high expression level. Meanwhile, we found that CsLHY expression rhythm was not affected by different photoperiods but was quickly broken by cold, and the low temperature induced and kept CsLHY expression at a relatively high level. Yeast one-hybrid and dual-luciferase assays confirmed that CsLHY can bind to the promoter of Sugars Will Eventually be Exported Transporters 17 (CsSWEET17) and function as a transcriptional activator. Furthermore, suppression of CsLHY expression in tea leaves not only reduced CsSWEET17 expression but also impaired the freezing tolerance of leaves compared to the control. Our results demonstrate that CsLHY plays a positive role in the low-temperature response of tea plants by regulating CsSWEET17 when considered together.


Assuntos
Camellia sinensis , Temperatura Baixa , Fatores de Transcrição/metabolismo , Camellia sinensis/metabolismo , Ritmo Circadiano , Chá , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA