RESUMO
Cryopreservation of a small number of human spermatozoa is still a major challenge for embryologists. The aim of this study was to evaluate the clinical pregnancy and neonatal outcomes of intracytoplasmic sperm injection (ICSI) using a modified micro cryotube as freezing carrier for freezing small numbers of human spermatozoa collected by testicular sperm aspiration (TESA). We conducted a retrospective study to analyses the ICSI outcomes of using frozen-thawed few testicular spermatozoa in males with obstructive azoospermia (OA) from June 2017 to June 2021. Of 155 ICSI treatment cycles, 79 cycles were allocated to frozen sperm group and a modified micro cryotube was used for freezing testicular sperm, 76 cycles were allocated as fresh sperm group. No significant differences were observed in fertilization rate, good quality embryo rate, and blastocyst rate between the frozen sperm group and fresh sperm group (P > 0.05). Similarly, in the fresh embryo transfer cycles plus the first frozen-thawed embryo transfer cycles, the total clinical pregnancy rate (54.43% vs 57.89%), implantation rate (46.08% vs 49.47%), miscarriage rate (13.95% vs 13.64%) and live birth rate (45.57% vs 48.68%) were not statistically different between the frozen and fresh sperm groups (P > 0.05). In addition, there was no statistical differences in the mean gestational age (38.33weeks ± 1.74 vs 37.89weeks ± 1.87), preterm delivery rate (5.56% vs 10.81%), mean birth weight at delivery (3026.50 g ± 577.64 vs 2977.56 g ± 528.93), and low birth weight (12.50% vs 19.51%) between the two groups (P > 0.05 in all cases). Modified micro cryotube for cryopreservation of rare testicula rretrieved spermatozoa did not negatively affect the pregnancy and neonatal outcomes in TESA-ICSI cycles. The presented method may be a useful alternative for cryopreservation of small numbers of human spermatozoa in clinical setting.
Assuntos
Injeções de Esperma Intracitoplásmicas , Recuperação Espermática , Gravidez , Feminino , Recém-Nascido , Masculino , Humanos , Adulto , Injeções de Esperma Intracitoplásmicas/métodos , Estudos Retrospectivos , Criopreservação/métodos , Sêmen , Espermatozoides , Taxa de GravidezRESUMO
Since embryonic stem cells (ESCs) were first identified, significant progress has been achieved. However, the establishment of buffalo ESCs (bESCs) is still unclear. This study was undertaken to explore the effect of the blastocyst stage on the isolation of bESCs. Firstly, our results indicated that the pluripotent genes were mainly expressed at the early stages of blastocyst, and the attachment and colony formation rates of bESCs derived from expanded blastocyst and hatched blastocyst were significantly higher than early blastocyst and blastocyst. In the meantime, bESCs showed positive alkaline phosphatase activity and expressed genes like OCT4, NANOG, SOX2, c-MYC, CDH1, KLF4, and TBX3. Immunofluorescence also confirmed the expression of OCT4, SOX2. Embryoid bodies expressing three marker genes were generated from the differentiation experiment, and fibroblast, epithelial, and neuron-like cells were induced. Moreover, naive-related genes KLF4, TBX3, primed-related genes FGF5, ACTA2 were expressed in the cells, but not REX-1. Immunofluorescence and western blot confirmed the FGF5 expression. Furthermore, bESCs could maintain pluripotency with the signal of LIF and bFGF. In summary, our results indicated that expanded blastocyst and hatched blastocyst are more suitable for bESCs isolation.
RESUMO
BACKGROUND: Azoospermic patients have benefited from both epididymal and testicular spermatozoa intracytoplasmic sperm injection (ICSI) treatment and lasers have been used to identify viable, immotile spermatozoa before the procedure. There are limited studies on the safety of laser-assisted selection of immotile spermatozoa. The aim of this study was to investigate the impact of laser-assisted selection of immotile spermatozoa on the obstetric and neonatal outcomes after ICSI. METHODS: A retrospective comparative study was conducted on outcomes of ICSI cycles with testicular spermatozoa from June 2014 to June 2018. Of 132 cycles, 33 were allocated to the test group and oocytes were injected with immotile spermatozoa selected by laser, 99 cycles were allocated as control group. RESULTS: Compared with the control group, no significant differences were found in the pregnancy, implantation, miscarriage and live birth rates in the test group in either fresh or frozen transfer cycles. The cumulative live birth rate in the test group was 69.70%, which was slightly higher than in the control group (60.61%), but this was not statistically different. There were no differences in the average gestational age, premature birth rate, neonatal birth weight, and the malformation rate between the test and control groups (P > 0.05). In addition, the obstetric outcome between the two groups were not different (P > 0.05). CONCLUSIONS: No negative effect on perinatal and neonatal outcomes was seen by using laser-assisted selection of immotile spermatozoa for TESA-ICSI. This study endorses the use of laser-assisted selection of viable spermatozoa for ICSI cycles.
Assuntos
Azoospermia/terapia , Separação Celular/métodos , Resultado da Gravidez , Injeções de Esperma Intracitoplásmicas , Recuperação Espermática , Adulto , Azoospermia/epidemiologia , Azoospermia/patologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Fertilização in vitro/métodos , Humanos , Recém-Nascido , Lasers , Masculino , Gravidez , Resultado da Gravidez/epidemiologia , Taxa de Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/métodos , Motilidade dos EspermatozoidesRESUMO
A highly efficient quinine-derived primary-amine-catalyzed asymmetric aldol addition of hydroxyacetone to arylglyoxals is described. Structurally diverse anti-2,3-dihydroxy-1,4-diones were generated in high yields, with good diastereoselectivities and enantioselectivities.
Assuntos
Acetona/análogos & derivados , Aldeídos/química , Glioxilatos/química , Acetona/química , Catálise , Técnicas de Química Sintética , Estrutura MolecularRESUMO
BACKGROUND: In recent years, single blastocyst transfer combined with vitrification has been applied widely, which can maximize the cumulative pregnancy rate in per oocyte retrieval cycles and minimize the multiple pregnancy rate. Thus, the guarantee for these is the effectiveness of vitrified blastocyst. Studies has shown that AS of the blastocoel cavity prior to vitrification can reduce injuries, increase the thawed blastocyst survival rate and implantation rate. Several AS methods have been established. However, only a few studies have compared the effectiveness and safety of these AS methods. In this study, we aimed to compare the clinical outcomes and neonatal outcomes in FET cycles with single blastocyst that were artificially shrunk before vitrification by either LAS or MNAS method. METHODS: A retrospective comparative study of FET cycles in infertile patients which were at our clinic between January 2013 and December 2014. These FET cycles were divided into two groups by the shrinking methods used before vitrification and the clinical and neonatal outcomes were assessed. RESULTS: There were no statistically differences in blastocyst survival rates (95.40% vs 94.05%, P > 0.05) between the LAS and MNAS groups. However, compared with MNAS, LAS improved the warmed blastocyst implantation/clinical pregnancy rate (60.82% vs 54.37%, P < 0.05), live birth rate (50.43% vs 45.22%, P < 0.05) and also increased the monozygotic twin rate (4.07% vs 1.73%, P < 0.05). There were no differences in the average gestational weeks (38.83 ± 1.57 vs 38.74 ± 1.75), premature birth rate (0.30% vs 0.49%), average birth weight (3217.89 ± 489.98 g vs 3150.88 ± 524.03 g), low birth weight rate (5.60% vs 8.63%) and malformation rate (0.59% vs 0.48%) (P > 0.05). CONCLUSIONS: No significant differences in neonatal outcomes were observed, while in clinical outcomes, LAS improved the warmed blastocyst implantation/clinical pregnancy rate and live birth rate markedly, there was also an increased risk of monozygotic twin pregnancies.
Assuntos
Coeficiente de Natalidade/tendências , Blastocisto/fisiologia , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Infertilidade Feminina/terapia , Vitrificação , Adulto , Feminino , Seguimentos , Humanos , Infertilidade Feminina/diagnóstico , Gravidez , Taxa de Gravidez/tendênciasRESUMO
Despite the long-standing exploration of the catalytic asymmetric Tsuji-Trost allylation reaction since the mid-20th century, most reported instances have adhered to a two-component approach. Here, we present a remarkably efficient three-component asymmetric allylation reaction enabled by the collaborative action of chiral aldehyde and palladium. A diverse array of NH2-unprotected amino acid esters, aryl or alkenyl iodides, and allyl alcohol esters exhibit robust participation in this reaction, resulting in the synthesis of structurally diverse non-proteinogenic α-amino acid esters with favorable experimental outcomes. Mechanistic investigations reveal the dominance of the allylation/Heck coupling cascade in reactions involving electron-rich aryl iodides, while the Heck coupling/allylation cascade emerges as the dominant pathway in reactions involving electron-deficient aryl iodides. This chiral aldehyde/palladium combining catalytic system precisely governs the chemoselectivity of C-allylation and N-allylation, the regioselectivity of linear and branched allylation, and the enantioselectivity of C-allylation products.
RESUMO
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
RESUMO
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
RESUMO
A highly efficient, atom-economical α-allylation reaction of NH2-unprotected amino acid esters and alkynes is achieved by chiral aldehyde/palladium combined catalysis. A diverse range of α,α-disubstituted nonproteinogenic α-amino acid esters are produced in 31-92% yields and 84-97% ee values. The allylation products are utilized for the synthesis of drug molecule BMS561392 and other chiral molecules possessing complex structures. Mechanistic investigations reveal that this reaction proceeds via a chiral aldehyde-/palladium-mediated triple cascade catalytic cycle.
RESUMO
Cumulus oophorus complexes (COCs) are the first extracellular barriers that sperm must pass through to fuse with oocytes, which have an important role in oocyte maturation and fertilization. However, little is known about the molecular mechanisms of COCs involved in fertilization. In this study, COCs were collected and then randomly divided into a test group that interacted with sperm and a control group that did not interact with sperm. Then, the total RNA was extracted; RNA transcriptome and small RNA libraries were prepared, sequenced, and analyzed. The results showed that 1283 differentially expressed genes (DEGs), including 560 upregulated and 723 downregulated genes. In addition, 57 differentially expressed miRNAs (DEMIs) with 35 upregulated and 22 downregulated were also detected. After the RNA-seq results were verified by RT-qPCR, 86 effective DEGs and 40 DEMIs were finally screened and a DEMI-DEG regulatory network was constructed. From this, the top ten hub target genes were HNF4A, SPN, WSCD1, TMEM239, SLC2A4, E2F2, SIAH3, ADORA3, PIK3R2, and GDNF, and they were all downregulated. The top ten hub DEMIs were miR-6876-5p, miR-877-3p, miR-6818-5p, miR-4690-3p, miR-6789-3p, miR-6837-5p, miR-6861-5p, miR-4421, miR-6501-5p, and miR-6875-3p, all of which were upregulated. The KEGG signaling pathway enrichment analysis showed that the effective DEGs were significantly enriched in the calcium, AMPK, and phospholipase D signaling pathways. Our study identified several DEGs and DEMIs and potential miRNA-mRNA regulatory pathways in COCs and these may contribute to fertilization. This study may provide novel insights into potential biomarkers for fertilization failure.
Assuntos
Células do Cúmulo , Redes Reguladoras de Genes , MicroRNAs , RNA Mensageiro , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Células do Cúmulo/metabolismo , Fertilização/genética , Masculino , Perfilação da Expressão Gênica , Transcriptoma , Camundongos , Regulação da Expressão GênicaRESUMO
Even though catalytic asymmetric bifunctionalization of allenes has been extensively studied, almost all of the reported examples have been achieved in a two-component manner. In this study, we report a highly efficient asymmetric bifunctionalization of allenes with iodohydrocarbons and NH2-unprotected amino acid esters. The adopted chiral aldehyde/palladium combined catalytic system precisely governs the chemoselectivity, regioselectivity, and stereoselectivity of this three-component reaction. A wide range of substituted aryl iodides, allenes and amino acid esters can well participate in this reaction and deliver structurally diverse α,α-disubstituted α-amino acid esters with excellent experimental outcomes. One of the resulting products is utilized for the total synthesis of the molecule (S,R)-VPC01091.
RESUMO
Natural chlorophylls mostly found in vegetables such as spinach (Spinacia oleracea) could be employed as a possible substitute for synthetic colorants because of their intense green properties. However, the stability of natural chlorophyll is a major challenge to its utilization in the food industry. In this study, spray drying as an encapsulation technique was used to improve the stability of natural chlorophyll. Box-Behnken design was utilized to optimize the spray drying conditions for chlorophyll. Optimum conditions were given as inlet temperature, 132°C; inulin-to-whey protein isolate ratio, 61%:39%; pump rate, 25%, resulting in 92.3% encapsulation efficiency, 69.4% solubility, and -13.5 mV zeta potential at a desirability level of 0.901. The particle size, Carr index, bulk and tapped density, polydispersity index, and color showed satisfactory results. Crystallinity, endothermic peak melting temperature, and the enthalpy of chlorophyll-loaded microcapsules increased when compared to the blank microcapsules suggesting decreased hygroscopicity and enhanced thermal stability. In addition, the suitability of fabricated microcapsules using yogurt as a food model was assessed. Yogurt incorporated with chlorophyll-loaded microcapsules showed no significant pH modification with better apparent viscosity than control and sodium copper chlorophyllin (SCC) yogurt after 9 days of refrigerated storage. Based on the studied responses, the spray drying process could be optimized to achieve optimal output and product quality. PRACTICAL APPLICATION: Spray drying is a cheap and convenient approach for microencapsulating bioactive compounds such as chlorophyll. However, the physico-chemical and functional properties of the spray-dried microcapsules are influenced by operating conditions, such as inlet temperature, type and concentration of wall materials, and feed flow rate. Therefore, to maximize and obtain a superior quality of the final product, there is a need to optimize the spray drying process. The Box-Behnken design employed in this study could be utilized as an appropriate technique to design, enhance, and develop process parameters for the fabrication and better retention of the physico-chemical properties of spray-dried chlorophyll microcapsules.
Assuntos
Alimento Funcional , Inulina , Proteínas do Soro do Leite/química , Inulina/química , Clorofila , Cápsulas/química , ExcipientesRESUMO
The negative impacts of repeated superovulation on mitochondrial function and oocyte quality remain unresolved. Epicatechin (EC), a polyphenolic compound found in the human diet with strong antioxidant activity, was investigated for its effects and underlying mechanism on embryonic development after repeated superovulation. The results showed that as the number of superovulation cycles increased, the number of 2-cell embryos decreased, the development of embryos in subsequent in vitro culture was delayed, the apoptosis rate of blastocyst cells increased and the number of blastocyst cells decreased. However, intraperitoneal injection of EC (10 mg/kg body-weight) for two consecutive days during repeated superovulation increased mitochondrial DNA copies in 2-cell embryos of mice. It also promoted the expression of antioxidant enzyme genes in ovaries, increased the content of glutathione (GSH) content and improved the antioxidant capacity of ovaries. Altogether, these results revealed that intraperitoneal injection of EC could increase the embryonic mitochondrial DNA copy number (mtDNA-CN) and enhance the ovary's antioxidant capacity and GSH content, ultimately promoting the quality of mouse embryos in the process of repeated superovulation.
Assuntos
Catequina , Superovulação , Gravidez , Feminino , Camundongos , Humanos , Animais , Catequina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Oócitos/metabolismo , DNA Mitocondrial , Blastocisto/metabolismo , Glutationa/metabolismoRESUMO
A chiral aldehyde/palladium catalysis-enabled asymmetric α-allylation of NH2-unprotected amino acid esters with 1,3-disubstituted allyl acetates is described in this work. With the utilization of different chiral phosphine ligands, both the anti- and syn-selective allylation reactions are achieved enantioselectively. A series of α,α-disubstituted amino acid esters bearing two adjacent chiral centers are produced in moderate-to-excellent yields, diastereoselectivities, and enantioselectivities.
RESUMO
The direct catalytic α-hydrocarbylation of readily available amino acids with halohydrocarbons is one of the most straightforward methods leading to α,α-disubstituted non-proteinogenic α-amino acid compounds. However, all the reported methodologies depend on N-protected amino acids as starting materials. Herein, we report on three highly efficient aldehyde-catalyzed direct α-hydrocarbylations of N-unprotected amino acid esters with aryl-, allyl-, and benzyl halides. By promoting a simple chiral BINOL-aldehyde catalyst or combining catalysts of a chiral aldehyde and Lewis acid ZnCl2, the asymmetric α-arylation, α-allylation, and α-benzylation of amino acid esters with the corresponding halohydrocarbons proceed smoothly, producing α,α-disubstituted α-amino acids in moderate-to-high yields and good-to-excellent enantioselectivities. The asymmetric α-arylation reaction can be applied in the formal synthesis of the clinical candidate compound (+)-AG-041R. Based on the results given by control experiments, three reaction models are proposed to illustrate the stereoselective-control outcomes.
RESUMO
The combined catalytic systems derived from organocatalysts and transition metals exhibit powerful activation and stereoselective-control abilities in asymmetric catalysis. This work describes a highly efficient chiral aldehyde-nickel dual catalytic system and its application for the direct asymmetric α-propargylation reaction of amino acid esters with propargylic alcohol derivatives. Various structural diversity α,α-disubstituted non-proteinogenic α-amino acid esters are produced in good-to-excellent yields and enantioselectivities. Furthermore, a stereodivergent synthesis of natural product NP25302 is achieved, and a reasonable reaction mechanism is proposed to illustrate the observed stereoselectivity based on the results of control experiments, nonlinear effect investigation, and HRMS detection.
Assuntos
Aldeídos , Aminoácidos , Aldeídos/química , Aminoácidos/química , Níquel , Estereoisomerismo , Catálise , ÉsteresRESUMO
Chlorophyll-loaded nano/microparticles were fabricated using zein, casein, and whey protein isolate as carrier agents. Chlorophyll was adequately loaded in these wall materials with encapsulation efficiency, loading capacity, and particle size ranging from 83.6 to 96.3%, 0.8 to 5.5%, and 483 to 1020 nm respectively. As unveiled by differential scanning calorimetry (DSC), chlorophyll existed in a non-crystalline state inside the different wall materials. The encapsulation techniques and different carrier agents were effective in protecting chlorophyll from acid pH (pH 2 to 6, chlorophyll retention; 39.3 to 97.8%) and light (chlorophyll retention; 41.6 to 65.5%) conditions. Employing the first-order model to investigate the thermal degradation kinetics of the different chlorophyll loaded nano/microparticles showed activation energy, Gibbs free energy, enthalpy, and entropy change ranging from 49.6 to 70.1 kJ/mol, 93.4 to 100.0 kJ mol-1, 46.6 to 67.4 kJ mol-1, and -147.8 to -86.4 J mol-1 K-1, respectively.
Assuntos
Clorofila , Varredura Diferencial de Calorimetria , Clorofila/química , Entropia , Cinética , TermodinâmicaRESUMO
Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported.
RESUMO
Catalytic asymmetric Tsuji-Trost benzylation is a promising strategy for the preparation of chiral benzylic compounds. However, only a few such transformations with both good yields and enantioselectivities have been achieved since this reaction was first reported in 1992, and its use in current organic synthesis is restricted. In this work, we use N-unprotected amino acid esters as nucleophiles in reactions with benzyl alcohol derivatives. A ternary catalyst comprising a chiral aldehyde, a palladium species, and a Lewis acid is used to promote the reaction. Both mono- and polycyclic benzyl alcohols are excellent benzylation reagents. Various unnatural optically active α-benzyl amino acids are produced in good-to-excellent yields and with good-to-excellent enantioselectivities. This catalytic asymmetric method is used for the formal synthesis of two somatostatin mimetics and the proposed structure of natural product hypoestestatin 1. A mechanism that plausibly explains the stereoselective control is proposed.
Assuntos
Aminoácidos , Álcool Benzílico , Álcoois Benzílicos/química , Catálise , Paládio/químicaRESUMO
A ternary catalytic system comprising a chiral aldehyde, a transition metal, and a Lewis acid is rationally designed for the asymmetric α-allylic alkylation reaction of aza-aryl methylamines and π-allylmetal electrophiles. Structural diversity chiral amines bearing carbon-carbon double bonds and aza-heterocycles are produced in moderate to good yields with good to excellent enantioselectivities. These products can be readily converted into other chiral amines without the loss of enantioselectivity. A reasonable reaction mechanism is proposed to illustrate the stereoselective control results.