Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Orthop ; 48(8): 1971-1978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38658421

RESUMO

PURPOSE: The Sanders Scoring System has revolutionized the way we assess the remaining growth potential of the skeleton. However, because it involves radiation exposure, it must be used with caution in children. The purpose of the study was to evaluate whether the Sanders skeletal maturity score (SMS) could be accurately determined using ultrasound (U). METHODS: We took radiographs (R) of the hand and performed U of the thumb and index finger in 115 patients between six and 19 years of age who were undergoing treatment for scoliosis or limb deformities. Paediatric orthopaedic surgeons, a paediatrician, and a paediatric radiologist were evaluated the blinded images. Those classified images are based on the SMS and the Thumb Ossification Composite Index (TOCI). RESULTS: Intrarater reliability was high for SMS and slightly weaker for TOCI, but still significant. Interrater reliability was clear for R and weaker for U in both staging systems. Ultimately, SMS 3 and 7 achieved the highest percentage of concordance (P) of 71.7% and 66.0%, respectively, when U was performed. Combining the clinically relevant groups of SMS 3&4 and SMS 7&8 also significantly increased peak scores (SMS 3 and 4 P = 76.7%; SMS 7 and 8 P = 79.7%). The probabilities of peak scores were significantly weaker when the TOCI score was examined. CONCLUSION: Our study shows that U can be used effectively especially to measure stages 3 and 4 and stages 7 and 8 of SMS. The U method is easy to use and therefore may offer advantages in clinical practice without the need for radiation exposure.


Assuntos
Determinação da Idade pelo Esqueleto , Tomada de Decisão Clínica , Ultrassonografia , Humanos , Criança , Adolescente , Masculino , Feminino , Ultrassonografia/métodos , Determinação da Idade pelo Esqueleto/métodos , Tomada de Decisão Clínica/métodos , Reprodutibilidade dos Testes , Adulto Jovem , Radiografia/métodos , Mãos/diagnóstico por imagem , Escoliose/diagnóstico por imagem , Variações Dependentes do Observador
2.
Int J Comput Assist Radiol Surg ; 18(6): 1001-1008, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079246

RESUMO

PURPOSE: Derotation varisation osteotomy of the proximal femur in pediatric patients usually relies on 2-dimensional X-ray imaging, as CT and MRI still are disadvantageous when applied in small children either due to a high radiation exposure or the need of anesthesia. This work presents a radiation-free non-invasive tool to 3D-reconstruct the femur surface and measure relevant angles for orthopedic diagnosis and surgery planning from 3D ultrasound scans instead. METHODS: Multiple tracked ultrasound recordings are segmented, registered and reconstructed to a 3D femur model allowing for manual measurements of caput-collum-diaphyseal (CCD) and femoral anteversion (FA) angles. Novel contributions include the design of a dedicated phantom model to mimic the application ex vivo, an iterative registration scheme to overcome movements of a relative tracker only attached to the skin, and a technique to obtain the angle measurements. RESULTS: We obtained sub-millimetric surface reconstruction accuracy from 3D ultrasound on a custom 3D-printed phantom model. On a pre-clinical pediatric patient cohort, angular measurement errors were [Formula: see text] and eventually [Formula: see text] for CCD and FA angles, respectively, both within the clinically acceptable range. To obtain these results, multiple refinements of the acquisition protocol were necessary, ultimately reaching success rates of up to 67% for achieving sufficient surface coverage and femur reconstructions that allow for geometric measurements. CONCLUSION: Given sufficient surface coverage of the femur, clinically acceptable characterization of femoral anatomy is feasible from non-invasive 3D ultrasound. The acquisition protocol requires leg repositioning, which can be overcome using the presented algorithm. In the future, improvements of the image processing pipeline and more extensive surface reconstruction error assessments could enable more personalized orthopedic surgery planning using cutting templates.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Criança , Imageamento Tridimensional/métodos , Radiografia , Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Osteotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA