Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 25(7): 2878-2895, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769419

RESUMO

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown. Here, we show that fasting affects retinoid mobilization in a tissue-specific manner, and that hormone-sensitive lipase (HSL) in adipose tissue is required to maintain serum concentrations of retinol and RBP4 during fasting in mice. We found that extracellular retinol-free apo-RBP4 induces retinol release by adipocytes in an HSL-dependent manner. Consistently, global or adipocyte-specific HSL deficiency leads to an accumulation of retinoids in adipose tissue and a drop of serum retinol and RBP4 during fasting, which affects retinoid-responsive gene expression in eye and kidney and lowers renal retinoid content. These findings establish a novel crosstalk between liver and adipose tissue retinoid stores for the maintenance of systemic vitamin A homeostasis during fasting.


Assuntos
Adipócitos , Jejum , Proteínas Plasmáticas de Ligação ao Retinol , Esterol Esterase , Vitamina A , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Animais , Vitamina A/metabolismo , Vitamina A/sangue , Jejum/metabolismo , Camundongos , Adipócitos/metabolismo , Esterol Esterase/metabolismo , Esterol Esterase/genética , Fígado/metabolismo , Tecido Adiposo/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
2.
Am J Physiol Endocrinol Metab ; 327(2): E203-E216, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38895981

RESUMO

Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to ß-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.


Assuntos
Dieta Hiperlipídica , Homeostase , Mucosa Intestinal , Obesidade , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/genética , Aumento de Peso
3.
J Biol Chem ; 298(9): 102287, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868560

RESUMO

The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown. Here we show that short-term, but not chronic, liver-specific deletion of p53 in mice reduces liver glycogen levels, and we implicate the transcription factor forkhead box O1 protein (FOXO1) in the regulation of p53 and its target genes. We demonstrate that acute p53 deletion prevents glycogen accumulation upon refeeding, whereas a chronic loss of p53 associates with a compensational activation of the glycogen synthesis pathway. Moreover, we identify fasting-activated FOXO1 as a repressor of p53 transcription in hepatocytes. We show that this repression is relieved by inactivation of FOXO1 by insulin, which likely mediates the upregulation of p53 expression upon refeeding. Strikingly, we find that high-fat diet-induced insulin resistance with persistent FOXO1 activation not only blunted the regulation of p53 but also the induction of p53 target genes like p21 during fasting, indicating overlapping effects of both FOXO1 and p53 on target gene expression in a context-dependent manner. Thus, we conclude that p53 acutely controls glycogen storage in the liver and is linked to insulin signaling via FOXO1, which has important implications for our understanding of the hepatic adaptation to nutrient availability.


Assuntos
Proteína Forkhead Box O1 , Homeostase , Glicogênio Hepático , Fígado , Proteína Supressora de Tumor p53 , Animais , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Glucose/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos , Triglicerídeos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Lipid Res ; 63(10): 100268, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030930

RESUMO

Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice. Here, we investigated the effects of an acute mobilization of hepatic vitamin A stores by hepatic overexpression of RBP4 in mice. We show that hepatic retinol mobilization decreases body fat content and enhances fat turnover. Mechanistically, we found that acute retinol mobilization increases hepatic expression and serum levels of fibroblast growth factor 21 (FGF21), which is regulated by retinol mobilization and retinoic acid in primary hepatocytes. Moreover, we provide evidence that the insulin-sensitizing effect of FGF21 is associated with organ-specific adaptations in retinoid homeostasis. Taken together, our findings identify a novel crosstalk between retinoid homeostasis and FGF21 in mice with acute RBP4-mediated retinol mobilization from the liver.


Assuntos
Fígado , Vitamina A , Camundongos , Animais , Vitamina A/metabolismo , Fígado/metabolismo , Insulina/metabolismo , Tretinoína/farmacologia , Glucose/metabolismo
5.
Environ Sci Technol ; 53(7): 3898-3907, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30844262

RESUMO

Perfluorinated alkyl acids (PFAA) are highly persistent and bioaccumulative and have been associated with several adverse health effects. The chemical structure mainly differs in two ways: the length of the hydrophobic alkyl chain and the type of hydrophilic end group. Little is known how the chemical structure affects the toxicokinetics (TK) in different organisms. We studied the TK of four PFAA (PFOS, PFHxS, PFOA, and PFBA) with different chain lengths (4-8 carbons) and functional groups (sulfonic and carboxylic acid) in zebrafish ( Danio rerio) embryo. The time courses of the external (ambient water) and internal concentrations were determined at three exposure concentrations from 2 up to 120 h postfertilization (hpf). Three of the four PFAA showed a biphasic uptake pattern with slow uptake before hatching (around 48 hpf) and faster uptake thereafter. A two-compartment TK model adequately described the biphasic uptake pattern, suggesting that the chorion functions as an uptake barrier until 48 hpf. The bioconcentration factors (BCF) determined at 120 hpf varied widely between PFAA with averages of approximately 4000 (PFOS), 200 (PFHxS), 50 (PFOA), and 0.8 (PFBA) L kg dry weight-1, suggesting that both the alkyl chain length and the functional group influence the TK. The differences in toxic potency were reduced by 3 orders of magnitude when comparing internal effect concentrations instead of effective external concentrations.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Embrião não Mamífero , Toxicocinética , Peixe-Zebra
6.
Mol Metab ; 79: 101855, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128827

RESUMO

OBJECTIVE: Retinol saturase (RetSat) is an endoplasmic reticulum-localized oxidoreductase highly expressed in organs involved in lipid metabolism such as white (WAT) and brown adipose tissue (BAT). Cold exposure was shown to increase RETSAT protein in BAT but its relevance for non-shivering thermogenesis, a process with beneficial effects on metabolic health, is unknown. METHODS: We analyzed the regulation of RetSat expression in white and brown adipocytes and different murine adipose tissue depots upon ß-adrenergic stimulation and cold exposure. RetSat function during the differentiation and ß-adrenergic stimulation of brown adipocytes was dissected by loss-of-function experiments. Mice with BAT-specific deletion of RetSat were generated and exposed to cold. Gene expression in human WAT was analyzed and the effect of RetSat depletion on adipocyte lipolysis investigated. RESULTS: We show that cold exposure induces RetSat expression in both WAT and BAT of mice via ß-adrenergic signaling. In brown adipocytes, RetSat has minor effects on differentiation but is required for maximal thermogenic gene and protein expression upon ß-adrenergic stimulation and mitochondrial respiration. In mice, BAT-specific deletion of RetSat impaired acute but not long-term adaptation to cold exposure. RetSat expression in subcutaneous WAT of humans correlates with the expression of genes related to mitochondrial function. Mechanistically, we found that RetSat depletion impaired ß-agonist-induced lipolysis, a major regulator of thermogenic gene expression in adipocytes. CONCLUSIONS: Thus, RetSat expression is under ß-adrenergic control and determines thermogenic capacity of brown adipocytes and acute cold tolerance in mice. Modulating RetSat activity may allow for therapeutic interventions towards pathologies with inadequate metabolic activity.


Assuntos
Lipólise , Vitamina A , Camundongos , Humanos , Animais , Vitamina A/metabolismo , Adrenérgicos/metabolismo , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA