Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8362-8371, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483326

RESUMO

Emulsions are indispensable in everyday life, and the demand for emulsions' diversity and control of properties is therefore substantial. As emulsions possess a high internal surface area, an understanding of the oil/water (o/w) interfaces at the molecular level is fundamental but often impaired by experimental limitations to probe emulsion interfaces in situ. Here, we have used light-responsive surfactants (butyl-AAP) that can photoisomerize between E and Z isomers by visible and UV light irradiation to tune the emulsion interfaces. This causes massive changes in the interface tension at the extended o/w interfaces in macroemulsions and a drastic shift in the surfactants' critical micelle concentration, which we show can be used to control both the stability and phase separation. Strikingly different from macroemulsions are nanoemulsions (RH ∼90 nm) as these are not susceptible to E/Z photoisomerization of the surfactants in terms of changes in their droplet size or ζ-potential. However, in situ second-harmonic scattering and pulsed-field gradient nuclear magnetic resonance (NMR) experiments show dramatic and reversible changes in the surface excess of surfactants at the nanoscopic interfaces. The apparent differences in ζ-potentials and surface excess provide evidence for a fixed charge to particle size ratio and the need for counterion condensation to renormalize the particle charge to a critical charge, which is markedly different compared to the behavior of very large particles in macroemulsions. Thus, our findings may have broader implications as the electrostatic stabilization of nanoparticles requires much lower surfactant concentrations, allowing for a more sustainable use of surfactants.

2.
Eur J Pharm Biopharm ; 201: 114380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960290

RESUMO

We have used pulsed field gradient (PFG)-NMR diffusion experiments, also known as DOSY, in combination with small angle X-ray scattering measurements to investigate structure and molecular exchange dynamics between pharmaceutical lipid nanoparticles and the bulk phase. Using liposomes and lipoplexes formed after complexation of the liposomes with messenger mRNA as test systems, information on dynamics of encapsulated water molecules, lipids and excipients was obtained. The encapsulated fraction, having a diffusivity similar to that of the liposomes, could be clearly identified and quantified by the NMR diffusion measurements. The unilamellar liposome membranes allowed a fast exchange of water molecules, while sucrose, used as an osmolyte and model solute, showed very slow exchange. Upon interactions with mRNA a topological transition from a vesicular to a lamellar organization took place, where the mRNA was inserted in repeating lipid bilayer stacks. In the lipoplexes, a small fraction of tightly bound water molecules was present, with a diffusivity that was influenced by the additional presence of sucrose. This extended information on dynamic coherencies inside pharmaceutical nanoparticle products, provided by the combined application of SAXS and PFG-NMR diffusion measurements, can be valuable for evaluation of quality and comparability of nanoscaled pharmaceuticals.


Assuntos
Lipossomos , Espectroscopia de Ressonância Magnética , Nanopartículas , RNA Mensageiro , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , Espectroscopia de Ressonância Magnética/métodos , Difusão , Cinética , Difração de Raios X/métodos , Sacarose/química , Lipídeos/química , Água/química , Excipientes/química , Bicamadas Lipídicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA