Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026393

RESUMO

Colorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer. This strategy integrates histopathological analysis, laser capture microdissection, and proteomics. Spatial proteome profiling of 200 tissue section samples facilitated by the fully integrated sample preparation technology SISPROT enabled the identification of more than 4000 proteins on the Orbitrap Exploris 240 from 2 mm2 × 10 µm tissue sections. Compared with normal adjacent tissues, we identified a spectrum of cancer-associated proteins and dysregulated pathways across various regions of colorectal cancer including ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Additionally, we conducted proteomic analysis on tumoral epithelial cells and paracancerous epithelium from early to advanced stages in hallmark rectum cancer and sigmoid colon cancer. Bioinformatics analysis revealed functional proteins and cell-type signatures associated with different regions of colorectal tumors, suggesting potential clinical implications. Overall, this study provides a comprehensive spatially resolved functional proteome landscape of colorectal cancer, serving as a valuable resource for exploring potential biomarkers and therapeutic targets.

2.
J Transl Med ; 19(1): 273, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174878

RESUMO

BACKGROUND: The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS: Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS: In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS: In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.


Assuntos
Neoplasias Colorretais , Genes Mitocondriais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia , Prognóstico
3.
Mikrochim Acta ; 187(8): 432, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638088

RESUMO

A label-free fluorescence method based on self-assembled DNA nanopompom has been developed for miRNA-21 detection. In the presence of miRNA-21, three DNA hairpin probes with split G-quadruplex assemble the DNA nanopompom. Based on the isothermal toehold-mediated DNA strand displacement reaction, the target miRNA can be catalytically recycled and trigger three DNA hairpin probes to self-assemble the DNA nanopompom and release the G-quadruplex. The formation of the G-quadruplex increases the fluorescence emission intensity of thioflavin. For thioflavin-based miRNA-21 detection, the excitation and emission wavelengths are set to 425 nm and 490 nm, respectively. The limit of detection for miRNA-21 is 0.8 pM according to F/F0 = 0.0031 × CmiRNA-21 + 1.0382 (R2 = 0.9978). This sensing system provides a low-cost, effective, and convenient method for miRNA detection, which holds great potential in biochemical diagnosis and clinical practice. Graphical abstract Label-free and self-assembled fluorescent DNA nanopompom for miRNA detection.


Assuntos
DNA/química , Corantes Fluorescentes/química , MicroRNAs/análise , Nanoestruturas/química , Benzotiazóis/química , Linhagem Celular Tumoral , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Quadruplex G , Humanos , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos
4.
Angew Chem Int Ed Engl ; 59(33): 13836-13843, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32367646

RESUMO

The development of novel photosensitizing agents with aggregation-induced emission (AIE) properties has fueled significant advances in the field of photodynamic therapy (PDT). An electroporation method was used to prepare tumor-exocytosed exosome/AIE luminogen (AIEgen) hybrid nanovesicles (DES) that could facilitate efficient tumor penetration. Dexamethasone was then used to normalize vascular function within the tumor microenvironment (TME) to reduce local hypoxia, thereby significantly enhancing the PDT efficacy of DES nanovesicles, and allowing them to effectively inhibit tumor growth. The hybridization of AIEgen and biological tumor-exocytosed exosomes was achieved for the first time, and combined with PDT approaches by normalizing the intratumoral vasculature as a means of reducing local tissue hypoxia. This work highlights a new approach to the design of AIEgen-based PDT systems and underscores the potential clinical value of AIEgens.


Assuntos
Exocitose , Exossomos/metabolismo , Nanoestruturas , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Cell Biochem ; 120(4): 6071-6077, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362162

RESUMO

Long noncoding RNAs (lncRNA)  have been demonstrated to extensively participate in a wide spectrum of biological activities ranging from embryogenesis and cancer progression. HOX transcript antisense RNA (Hotair), an lncRNA located in the HOXC locus, has been reported to play an important role in carcinogenesis. As a well-known oncogene, it potentiates cancer metastasis and tumor progression. And it also serves as a biomarker for poor prognosis and tumor recurrence. In this study, Hotair was found to be upregulated in colorectal cancer (CRC) cells and clinical specimens. Further investigation showed that knockdown of Hotair dramatically suppressed cell proliferation and colony formation, suggesting that Hotair may stimulate tumorigenesis of CRC. The enhancer of zeste homolog 2 (EZH2), a regulator of epigenetic modification, was upregulated in CRC cells and clinical samples. And the silence of EZH2 significantly suppressed cell viability and colony formation. Furthermore, the RNA immunoprecipitation assay revealed that Hotair directly bound EZH2 in CRC cells. In conclusion, Hotair mediated tumorigenesis via recruiting EZH2, which might shed light on the development of a novel therapeutic approach for patients with CRC.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , RNA Longo não Codificante/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HCT116 , Células HT29 , Humanos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , RNA Longo não Codificante/genética , Análise Serial de Tecidos
6.
Mol Cancer ; 18(1): 62, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30925929

RESUMO

Gastric cancer (GC) is one of the leading causes of cancer-related death in both men and women due to delayed diagnosis and high metastatic frequency. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids such as plasma, saliva, breast milk, cerebrospinal fluid, semen, urine, lymphatic fluid, amniotic fluid, sputum and synovial fluid. EVs deliver almost all types of biomolecules such as proteins, nucleic acids, metabolites, and even pharmacological compounds. These bioactive molecules can be delivered to recipient cells to influence their biological properties, modify surrounding microenvironment and distant targets. The extensive exploration of EVs enhances our comprehension of GC biology referring to tumor growth, metastasis, immune response and evasion, chemoresistance and treatment. In this review, we will sum up the effects of GC-derived EVs to the tumor microenvironment. Moreover, we will also summarize the function of microenvironment-derived EVs in GC and discuss how the bidirectional communication between tumor and microenvironment affect GC growth, metastatic behavior, immune response, and drug resistance. At last, we prospect the clinical application viewpoint of EVs in GC.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Comunicação Celular , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
7.
Environ Sci Technol ; 53(12): 6945-6953, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117540

RESUMO

The conversion of excess ammonia N into harmless N2 is a primary challenge for wastewater treatment. We present here a method to generate ClO• directionally for quick and efficient decomposition of NH4+ N to N2. ClO• was produced and enhanced by a bifacial anode, a front WO3 photoanode and a rear Sb-SnO2 anode, in which HO• generated on WO3 reacts with HClO generated on Sb-SnO2 to form ClO•. Results show that the ammonia decomposition rate of Sb-SnO2/WO3 is 4.4 times than that of WO3 and 3.3 times than that of Sb-SnO2, with achievement of the removal of NH4+ N on Sb-SnO2/WO3 and WO3 being 99.2 and 58.3% in 90 min, respectively. This enhancement is attributed to the high rate constant of ClO• with NH4+ N, which is 2.8 and 34.8 times than those of Cl• and HO•, respectively. The steady-state concentration of ClO• (2.5 × 10-13 M) is 102 times those of HO• and Cl•, and this is further confirmed by kinetic simulations. In combination with the Pd-Cu/NF cathode to form a denitrification exhaustion system, Sb-SnO2/WO3 shows excellent total nitrogen removal (98.4%), which is more effective than WO3 (47.1%) in 90 min. This study provides new insight on the directed ClO• generation and its application on ammonia wastewater treatment.


Assuntos
Amônia , Nitrogênio , Desnitrificação , Eletrodos , Águas Residuárias
8.
Future Oncol ; 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31802711

RESUMO

Aim: To investigate the autophagy-related gene (ATG) expression and the associated noncoding RNAs (ncRNA) and transcription factors (TF) in digestive system tumors (DST). Methods: We systematically investigated the ATG expression in DST by weighted gene correlation network analysis, crosstalk connection, functional analysis and Pivot analysis. Results: ATGs were clustered into six modules with co-expression in DST. Functional analysis revealed that six ATG-related modules were enriched in biological pathways involved in tumorigenesis. Pivot analysis identified key ncRNAs and TFs, which are essential for the pathogenesis, clinical diagnosis and treatment of DST. Conclusion: Our study highlights the crucial roles of ncRNA and TFs in the identification of potential biomarkers or therapeutic targets for DST.

9.
Cell Mol Biol Lett ; 24: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131011

RESUMO

BACKGROUND: While microRNAs (miRNAs) are known to play a critical role in the progression of colorectal cancer, the role of miR-107 remains unknown. We evaluated its role and explored the underlying mechanism. MATERIALS & METHODS: MTT, wound-healing, transwell migration and transwell invasion assays were performed to evaluate the role of miR-107 in SW629 cell proliferation, migration and invasion. Real time-PCR and dual-luciferase reporter gene, TFR1 overexpression and western blotting assays were used to explore the underlying mechanism. RESULTS: MiR-107 is downregulated in colorectal cancer tissues and several human colorectal cancer cell lines. Low miR-107 expression often indicates a poor survival rate for colorectal cancer patients. MiR-107 suppresses the proliferation, migration and invasion of SW620 cells by negatively regulating transferrin receptor 1 (TFR1). CONCLUSION: MiR-107 suppresses the metastasis of colorectal cancer and could be a potential therapy target in colorectal cancer patients.


Assuntos
Neoplasias Colorretais/genética , Genes Supressores de Tumor , MicroRNAs/genética , Receptores da Transferrina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Regulação para Cima/genética
10.
Anal Chem ; 90(9): 5879-5886, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29641186

RESUMO

Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm2 and 10 µm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm2 and 10 µm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.


Assuntos
Neoplasias do Colo/química , Proteoma/análise , Proteômica , Neoplasias do Colo/patologia , Humanos
11.
Environ Sci Technol ; 52(3): 1413-1420, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286654

RESUMO

A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl-, in which Cl· generated from oxidation of Cl- by photoholes selectively converted NH4+ to nitrogen gas and some NO3- or NO2-. The NO3- or NO2- was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L-1 inorganic nitrogen (NO3-, NH4+, NO3-/NH4+ = 1:1 and NO2-/NO3-/NH4+ = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min-1, which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.


Assuntos
Cloro , Nitrogênio , Eletrodos , Gases , Nitratos
12.
J Colloid Interface Sci ; 659: 676-686, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38211485

RESUMO

In this study, we prepare a highly efficient BiVO4 photoanode co-catalyzed with an ultrathin layer of N, S co-doped FeCo-Metal Organic Frameworks (MOFs) for photoelectrochemical water splitting. The introduction of N and S into FeCo-MOFs enhances electron and mass transfer, exposing more catalytic active sites and significantly improving the catalytic performance of N, S co-doped FeCo-based MOFs in water oxidation. The optimized BiVO4/NS-FeCo-MOFs photoanode exhibits impressive results, with a photocurrent density of 5.23 mA cm-2 at 1.23 V vs. Reversible Hydrogen Electrode (RHE) and an incident photon-to-charge conversion efficiency (IPCE) of 74.4 % at 450 nm in a 0.1 M phosphate buffered solution (pH = 7). These values are 4.84 times and 6.2 times higher than those of the original BiVO4 photoanode, respectively. Furthermore, the optimized BiVO4/NS-FeCo-MOFs photoanode demonstrates exceptional long-term stability, maintaining 96 % of the initial current after five hours.

13.
J Environ Pathol Toxicol Oncol ; 42(2): 79-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749091

RESUMO

Aberrant expression of the SRY-related HMG-box (SOX) genes contributes to tumor development and progression. This research aimed to identify the regulation of the SOX genes in stomach adenocarcinoma (STAD). Expression profiles downloaded from The Cancer Genome Atlas (TCGA) were conducted to analyze the expression and function of the SOX genes. A competing endogenous RNAs (ceRNA) network mediated by the SOX genes was effectively constructed consisting of 64 lncRNAs, 29 miRNAs, and 11 SOX genes based on predicted miRNAs shared by lncRNAs and mRNAs using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0. SOX9 was identified as a prognostic signature, which showed the usefulness of diagnosis and prognosis of STAD by the receiver operating characteristic (ROC) and Kaplan-Meier curves. SOX9 was also shown specifically in STAD and identified as highly expressed in the gastrointestinal tract. Gene Ontology (GO) enrichment analysis showed that SOX9 might influence the genes related to the pattern specification process, sodium ion homeostasis, and potassium ion transport, mainly including FEZF1, HOXC13, HOXC10, HOXC9, HOXA11, DPP6, ATP4B, CASQ2, KCNA1, ATP4A, and SFRP1. Furthermore, HOTAIR knockdown, miR-206-mimic transfection, the Cell Count Kit-8 (CCK-8) assay were performed to verify the function of HOTAIR/miR-206/SOX9 axis, which was identified in the ceRNA network analysis. HOTAIR could induce proliferation potentially by competitively binding miR-206/SOX9 axis in STAD. These findings provide new clues with prognostic and therapeutic implications in STAD and suggest that HOTAIR/miR-206/SOX9 might be a potential new strategy for therapeutic targeting of gastric cancer.


Assuntos
Adenocarcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética
14.
RSC Adv ; 13(23): 15640-15650, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37228684

RESUMO

Herein, an efficient CuO QDs/TiO2/WO3 photoanode and a Cu doped Co3S4/Ni3S2 cathode were successfully synthesized. The optimized CuO QDs/TiO2/WO3 photoanode achieved a photocurrent density of 1.93 mA cm-2 at 1.23 vs. RHE, which was 2.27 times that of a WO3 photoanode. The CuO QDs/TiO2/WO3-buried junction silicon (BJS) photoanode was coupled with the Cu doped Co3S4/Ni3S2 cathode to construct a novel photocatalytic fuel cell (PFC) system. The as-established PFC system showed a high rifampicin (RFP) removal ratio of 93.4% after 90 min and maximum power output of 0.50 mW cm-2. Quenching tests and EPR spectra demonstrated that ˙OH, ˙O2- and 1O2 were the main reactive oxygen species in the system. This work provides a possibility to construct a more efficient PFC system for environmental protection and energy recovery in the future.

15.
World J Clin Cases ; 10(7): 2253-2260, 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35321180

RESUMO

BACKGROUND: Plexiform fibromyxoma (PF) is a rare mesenchymal tumor, with limited case reports worldwide. Common clinical symptoms are abdominal discomfort and bleeding signs, which frequently present slow-onset in reported cases. Herein, we report a case of gastric PF presenting as acute onset and with pyemia accom-panying tumor rupture. We resected the tumor as well as the distal gastric, bulbus duodeni and gallbladder for treatment in emergency surgery. Notably, before the onset of the disease, the patient received coronavirus disease 2019 (COVID-19) vaccines. CASE SUMMARY: A 26-year-old man was admitted to our hospital, due to abdominal pain and fever after having received COVID-19 vaccines. Laboratory examination indicated severe sepsis. Computed tomography scan revealed a large mass in the abdomen. Deformation of the gastrointestinal tract was seen during gastroscopy. After failure of anti-infective treatment and symptoms of shock developed, he received an emergency surgery. We found a huge and partly ruptured mass, with thick purulence. Microscopically, the mass was composed of spindle cells with clarified cytoplasm, accompanied by myxoid stroma and arborizing blood vessels. Immunohistochemistry showed the tumor cells as positive for smooth muscle actin and succinate dehydrogenase subunit B but negative for DOG-1 and CD117. Finally, the patient was diagnosed with gastric PF and discharged from the hospital. CONCLUSION: Gastric PF manifesting as tumor rupture combined with pyemia is rare. Timely surgery is critical for optimal prognosis.

16.
Dis Markers ; 2022: 1758113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521635

RESUMO

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high mortality rate due to its poor diagnosis in the early stage. Here, we report a urinary metabolomic study on a cohort of CRC patients (n =67) and healthy controls (n =21) using ultraperformance liquid chromatography triple quadrupole mass spectrometry. Pathway analysis showed that a series of pathways that belong to amino acid metabolism, carbohydrate metabolism, and lipid metabolism were dysregulated, for instance the glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, glycolysis, and TCA cycle. A total of 48 differential metabolites were identified in CRC compared to controls. A panel of 12 biomarkers composed of chenodeoxycholic acid, vanillic acid, adenosine monophosphate, glycolic acid, histidine, azelaic acid, hydroxypropionic acid, glycine, 3,4-dihydroxymandelic acid, 4-hydroxybenzoic acid, oxoglutaric acid, and homocitrulline were identified by Random Forest (RF), Support Vector Machine (SVM), and Boruta analysis classification model and validated by Gradient Boosting (GB), Logistic Regression (LR), and Random Forest diagnostic model, which were able to discriminate CRC subjects from healthy controls. These urinary metabolic biomarkers provided a novel and promising molecular approach for the early diagnosis of CRC.


Assuntos
Neoplasias Colorretais , Biomarcadores/metabolismo , Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Glicina , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos
17.
Biomaterials ; 283: 121462, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272223

RESUMO

Although promising, the efficiency of aggregation-induced emission luminogens (AIEgens)-based photodynamic therapy (PDT) is limited by cellular glutathione (GSH). GSH is not a terminal reducing agent but it can be oxidized and subsequently reduced to its original state by reductases to further participate in antioxidant activity. It is therefore imperative to control GSH for effectively inducing oxidation within tumor cells. Recent studies showed that tumor cell metabolism depends mainly on glutamine, which is also the nitrogen and ATP source for GSH synthesis. Therefore, glutamine-based starvation therapy may be effective in enhancing photodynamic therapy. In this work, tumor-derived exosomes were developed for co-delivering AIEgens and proton pump inhibitors (PPI) for tumor combination therapy. Tumor-derived exosomes could specifically deliver drugs to the tumor sites, where PPI inhibited cell glutamine metabolism, suppressed tumor cell GSH and ATP production, and improved the effect of type-I PDT from AIEgens. When used in the treatment of MGC803 gastric cancer subcutaneous model, our system shows a high tumor growth inhibition rate, and even promoting tumor immunogenic death. This is the first work which combine inhibition of glutamine metabolism with PDT, and it has the potential to be applied for future designs of new tumor metabolic therapies and photodynamic systems.


Assuntos
Exossomos , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Exossomos/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores da Bomba de Prótons/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico
18.
J Colloid Interface Sci ; 619: 257-266, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35397459

RESUMO

In this work, we modified a BiVO4 photoanode with bilayer Fe-MOF and Ni-MOF as cocatalysts for the first time and obtained a highly efficient BiVO4 composite photoanode whose photocurrent density was increased by 2.7 times. The optimized BiVO4/Fe-MOF/Ni-MOF photoanode demonstrated a photocurrent density of 1.80 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode (RHE). The onset potential of the BiVO4/Fe-MOF/Ni-MOF photoanode markedly decreased from 0.9 V to 0.69 V in comparison with the pure BiVO4 photoanode. It is speculated that Fe-MOF and Ni-MOF led to more reactive oxygen evolution sites and that the bilayer cocatalysts synergistically promoted the separation of photogenerated electron-hole pairs, which may be the influencing factor for the photoelectrochemical performance of the BiVO4/Fe-MOF/Ni-MOF photoanode being distinctively enhanced. Thus, this work sheds some interesting new light on the construction of a high-efficiency photoanode for photoelectrochemical applications.

19.
Chemosphere ; 291(Pt 3): 132911, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34798112

RESUMO

Efficient high-concentration organics degradation (including 2-CP, phenol, and tetracycline) and simultaneous electricity generation were achieved via in situ producing H2O2 and synchronous catalytic conversion to more reactive oxygen species at stable modified copper foam cathode. The cathode was synthesized using the one-pot electrodeposition method and was used to in-situ generate H2O2 through the two-electron reduction of oxygen. The produced H2O2 was then catalytically converted into ·OH and ·O2- simultaneously. The results showed that the system using the Au-Fe co-modified cathode achieved an optimal rhodamine b (50 mg L-1) removal ratio and the removal ratios of 2-CP, phenol and tetracycline were all higher than 90% in 120 min. Meanwhile, it exhibited a high conversion performance of organics into electricity, which is superior to most of the reported PFC (Photocatalytic Fuel Cell) systems. Electron spin resonance test was conducted to ascertain the role of ·O2- and ·OH in the organics degradation. Furthermore, the Au-Fe-modified cathode exhibited superior stability for long-term application in the pH range of 3-7, which can be attributed to the protection of photocurrent and the interaction between Cu and Fe.


Assuntos
Cobre , Purificação da Água , Eletricidade , Eletrodos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Águas Residuárias
20.
Adv Sci (Weinh) ; 9(17): e2105376, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35396800

RESUMO

Metabolic interventions via targeting intratumoral dysregulated metabolism pathways have shown promise in reinvigorating antitumor immunity. However, approved small molecule immunomodulators often suffer from ineffective response rates and severe off-target toxicity. ATP occupies a crucial role in energy metabolism of components that form the tumor microenvironment (TME) and influences cancer immunosurveillance. Here, a nanocarrier-assisted immunometabolic therapy strategy that targets the ATP-adenosine axis for metabolic reprogramming of TME is reported. An ecto-enzyme (CD39) antagonist POM1 and AMP-activated protein kinase (AMPK) agonist metformin are both encapsulated into cancer cell-derived exosomes and used as nanocarriers for tumor targeting delivery. This method increases the level of pro-inflammatory extracellular ATP (eATP) while preventing the accumulation of immunosuppressive adenosine and alleviating hypoxia. Elevated eATP triggers the activation of P2X7-NLRP3-inflammasome to drive macrophage pyroptosis, potentiates the maturation and antigen capacity of dendritic cells (DCs) to enhance the cytotoxic function of T cells and natural killer (NK) cells. As a result, synergistic antitumor immune responses are initiated to suppress tumor progress, inhibit tumor distant metastases, provide long-term immune memory that offers protection against tumor recurrence and overcome anti-PD1 resistance. Overall, this study provides an innovative strategy to advance eATP-driven antitumor immunity in cancer therapy.


Assuntos
Apirase , Neoplasias , Imunidade Adaptativa , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Biomimética , Metabolismo Energético , Homeostase , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA