Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039060

RESUMO

The utilization of reduced plant height genes Rht-B1b and Rht-D1b, encoding homeologous DELLA proteins, led to the wheat Green Revolution (GR). However, the specific functions of GR genes in yield determination and the underlying regulatory mechanisms remained unknown. Here, we validated that Rht-B1b, as a representative of GR genes, affects plant architecture and yield component traits. Upregulation of Rht-B1b reduced plant height, leaf size and grain weight, but increased tiller number, tiller angle, spike number per unit area, and grain number per spike. Dynamic investigations showed that Rht-B1b increased spike number by improving tillering initiation rather than outgrowth, and enhanced grain number by promoting floret fertility. Rht-B1b reduced plant height by reducing cell size in the internodes, and reduced grain size or weight by decreasing cell number in the pericarp. Transcriptome analyses uncovered that Rht-B1b regulates many homologs of previously reported key genes for given traits and several putative integrators for different traits. These findings specify the pleiotropic functions of Rht-B1b in improving yield and provide new insights into the regulatory mechanisms underlying plant morphogenesis and yield formation.


Assuntos
Genes de Plantas , Triticum , Alelos , Fenótipo , Grão Comestível/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 716, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060949

RESUMO

BACKGROUND: Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS: Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION: These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.


Assuntos
Locos de Características Quantitativas , Superóxido Dismutase , Triticum , Triticum/genética , Triticum/enzimologia , Locos de Características Quantitativas/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Grão Comestível/genética , Fenótipo
3.
BMC Plant Biol ; 24(1): 306, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644480

RESUMO

Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.


Assuntos
Mapeamento Cromossômico , Genótipo , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
4.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
5.
Theor Appl Genet ; 137(7): 148, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836887

RESUMO

KEY MESSAGE: Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.


Assuntos
Alelos , Mapeamento Cromossômico , Ferro , Fenótipo , Locos de Características Quantitativas , Triticum , Zinco , Triticum/genética , Zinco/metabolismo , Ferro/metabolismo , Grão Comestível/genética , Cromossomos de Plantas/genética , Sementes/genética , Sementes/química , Genótipo
6.
J Integr Plant Biol ; 66(3): 468-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409921

RESUMO

Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.


Assuntos
Grão Comestível , Amido , Humanos , Grão Comestível/metabolismo , Amido/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
7.
Plant J ; 110(1): 23-42, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35020968

RESUMO

Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.


Assuntos
Grão Comestível , Raízes de Plantas , Produtos Agrícolas/genética , Grão Comestível/genética , Fenótipo , Melhoramento Vegetal , Raízes de Plantas/genética
8.
Plant Biotechnol J ; 21(10): 1952-1965, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381172

RESUMO

High-molecular-weight glutenin subunits (HMW-GS), a major component of seed storage proteins (SSP) in wheat, largely determine processing quality. HMW-GS encoded by GLU-1 loci are mainly controlled at the transcriptional level by interactions between cis-elements and transcription factors (TFs). We previously identified a conserved cis-regulatory module CCRM1-1 as the most essential cis-element for Glu-1 endosperm-specific high expression. However, the TFs targeting CCRM1-1 remained unknown. Here, we built the first DNA pull-down plus liquid chromatography-mass spectrometry platform in wheat and identified 31 TFs interacting with CCRM1-1. TaB3-2A1 as proof of concept was confirmed to bind to CCRM1-1 by yeast one hybrid and electrophoretic mobility shift assays. Transactivation experiments demonstrated that TaB3-2A1 repressed CCRM1-1-driven transcription activity. TaB3-2A1 overexpression significantly reduced HMW-GS and other SSP, but enhanced starch content. Transcriptome analyses confirmed that enhanced expression of TaB3-2A1 down-regulated SSP genes and up-regulated starch synthesis-related genes, such as TaAGPL3, TaAGPS2, TaGBSSI, TaSUS1 and TaSUS5, suggesting that it is an integrator modulating the balance of carbon and nitrogen metabolism. TaB3-2A1 also had significant effects on agronomic traits, including heading date, plant height and grain weight. We identified two major haplotypes of TaB3-2A1 and found that TaB3-2A1-Hap1 conferred lower seed protein content, but higher starch content, plant height and grain weight than TaB3-2A1-Hap2 and was subjected to positive selection in a panel of elite wheat cultivars. These findings provide a high-efficiency tool to detect TFs binding to targeted promoters, considerable gene resources for dissecting regulatory mechanisms underlying Glu-1 expression, and a useful gene for wheat improvement.


Assuntos
Proteoma , Triticum , Triticum/genética , Triticum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutens/genética , Regiões Promotoras Genéticas , Grão Comestível/genética , Amido/metabolismo , Peso Molecular
9.
Theor Appl Genet ; 136(12): 253, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989964

RESUMO

KEY MESSAGE: We identified a new wheat dwarfing allele Rht12b conferring reduced height and higher grain yield, pinpointed its causal variations, developed a breeding-applicable marker, and traced its origin and worldwide distribution. Plant height control is essential to optimize lodging resistance and yield gain in crops. RHT12 is a reduced height (Rht) locus that is identified in a mutationally induced dwarfing mutant and encodes a gibberellin 2-oxidase TaGA2oxA13. However, the artificial dwarfing allele is not used in wheat breeding due to excessive height reduction. Here, we confirmed a stable Rht locus, overlapping with RHT12, in a panel of wheat cultivars and its dwarfing allele reduced plant height by 5.4-8.2 cm, equivalent to Rht12b, a new allele of RHT12. We validated the effect of Rht12b on plant height in a bi-parent mapping population. Importantly, wheat cultivars carrying Rht12b had higher grain yield than those with the contrasting Rht12a allele. Rht12b conferred higher expression level of TaGA2oxA13. Transient activation assays defined SNP-390(C/A) in the promoter of TaGA2oxA13 as the causal variation. An efficient kompetitive allele-specific PCR marker was developed to diagnose Rht12b. Conjoint analysis showed that Rht12b plus the widely used Rht-D1b, Rht8 and Rht24b was the predominant Rht combination and conferred a moderate plant height in tested wheat cultivars. Evolutionary tracking uncovered that RHT12 locus arose from a tandem duplication event with Rht12b firstly appearing in wild emmer. The frequency of Rht12b was approximately 70% (700/1005) in a worldwide wheat panel and comparable to or higher than those of other widely used Rht genes, suggesting it had been subjected to positive selection. These findings not only identify a valuable Rht gene for wheat improvement but also develop a functionally diagnostic tool for marker-assisted breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Alelos , Genes de Plantas , Grão Comestível/genética , Fenótipo
10.
Theor Appl Genet ; 136(7): 165, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392240

RESUMO

KEY MESSAGE: We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers. Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m2. Among them, QDGF.caas-7A is co-located with QTGW.caas-7A and can explain 39.4-64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that TaSus2-2B and Rht-B1 were candidate genes for QTGW.caas-2B and the QTL cluster (QTGW.caas-4B, QGNS.caas-4B, and QSN.caas-4B), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.


Assuntos
Grão Comestível , Triticum , Grão Comestível/genética , Triticum/genética , Melhoramento Vegetal , Produtos Agrícolas , Locos de Características Quantitativas
11.
Theor Appl Genet ; 136(7): 167, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402103

RESUMO

KEY MESSAGE: We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars. Plant height is an important agronomic trait, and appropriately reduced height can improve yield potential and stability in wheat, usually combined with sufficient water and fertilizer. We previously detected a stable major-effect quantitative trait locus QPH.caas-5AL for plant height on chromosome 5A in a recombinant inbred line population of the cross 'Doumai × Shi 4185' using the wheat 90 K SNP assay. Here , QPH.caas-5AL was confirmed using new phenotypic data in additional environment and new-developed markers. We identified nine heterozygous recombinant plants for fine mapping of QPH.caas-5AL and developed 14 breeder-friendly kompetitive allele-specific PCR markers in the region of QPH.caas-5AL based on the genome re-sequencing data of parents. Phenotyping and genotyping analyses of secondary populations derived from the self-pollinated heterozygous recombinant plants delimited QPH.caas-5AL into an approximate 3.0 Mb physical region (521.0-524.0 Mb) according to the Chinese Spring reference genome. This region contains 45 annotated genes, and six of them were predicted as the candidates of QPH.caas-5AL based on genome and transcriptome sequencing analyses. We further validated that QPH.caas-5AL has significant effects on plant height but not yield component traits in a diverse panel of wheat cultivars; its dwarfing allele is frequently used in modern wheat cultivars. These findings lay a solid foundation for the map-based cloning of QPH.caas-5AL and also provide a breeding-applicable tool for its marker-assisted selection. Keymessage We precisely mapped QPH.caas-5AL for plant height in wheat, predicted candidate genes and confirmed genetic effects in a panel of wheat cultivars.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Cromossomos
12.
Theor Appl Genet ; 136(6): 142, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37247049

RESUMO

KEY MESSAGE: Adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895 was mapped to the physical interval 710.2-713.2 Mb on the long arm of chromosome 2A. Adult-plant resistance to stripe rust is generally more durable than all-stage resistance. Chinese wheat cultivar Zhongmai 895 showed stable stripe rust resistance at the adult-plant stage. To map the genetic loci underlying its resistance, 171 doubled haploid (DH) lines from a Yangmai 16/Zhongmai 895 cross were genotyped with the wheat 660 K SNP chip. Disease severities of the DH population and parents were assessed in four environments. A major QTL designated QYryz.caas-2AL was mapped to interval 703.7-715.3 Mb on the long arm of chromosome 2A using both chip-based and KASP (kompetitive allele-specific PCR) marker-based methods, explaining 31.5 to 54.1% of the phenotypic variances. The QTL was further validated in an F2 population of cross Emai 580/Zhongmai 895 with 459 plants and a panel of 240 wheat cultivars using KASP markers. Three reliable KASP markers predicted a low frequency (7.2-10.5%) of QYryz.caas-2AL in the test panel and remapped the gene to the physical interval 710.2-713.2 Mb. Based on different physical positions or genetic effects from known genes or QTL on chromosome arm 2AL, the gene was predicted to be a new one for adult-plant stripe rust resistance and was named Yr86. Twenty KASP markers linked to Yr86 were developed in this study based on wheat 660 K SNP array and genome re-sequencing. Three of them are significantly associated with stripe rust resistance in natural population. These markers should be useful for marker-assisted selection and also provide a starting point for fine mapping and map-based cloning of the new resistance gene.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único
13.
Theor Appl Genet ; 136(3): 62, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36914894

RESUMO

KEY MESSAGE: We fine mapped RHT26 for plant height in wheat, confirmed its genetic effects in a panel of wheat cultivars and predicted candidate genes. Development of wheat cultivars with appropriate plant height (PH) is an important goal in breeding. Utilization of semi-dwarfing genes Rht-B1b and Rht-D1b triggered wheat Green Resolution in the 1960s. Since these genes also bring unfavorable features, such as reduced coleoptile length and grain weight, it is necessary to identify alternative reduced height genes without yield penalty. Here we constructed a high-density genetic map of a recombinant inbred line population derived from the cross of Zhongmai175 and Lunxuan987 and detected a stable genetic locus for PH, designated RHT26, on chromosome arm 3DL in all of six environments, accounting for 6.8-14.0% of the phenotypic variances. RHT26 was delimited to an approximate 1.4 Mb physical interval (517.1-518.5 Mb) using secondary mapping populations derived from 22 heterozygous recombinant plants and 24 kompetitive allele-specific PCR markers. Eleven high-confidence genes were annotated in the physical interval according to the Chinese Spring reference genome, and four of them were predicted as candidates for RHT26 based on genome and transcriptome sequencing analyses. We also confirmed that RHT26 had significant effects on PH, but not grain yield in a panel of wheat cultivars; its dwarfing allele has been frequently used in wheat breeding. These findings lay a sound foundation for map-based cloning of RHT26 and provide a breeding-applicable tool for marker-assisted selection.


Assuntos
Melhoramento Vegetal , Triticum , Mapeamento Cromossômico , Triticum/genética , Genes de Plantas , Cotilédone , Grão Comestível/genética , Fenótipo
14.
Theor Appl Genet ; 136(11): 232, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875655

RESUMO

KEY MESSAGE: Four stable QTL for adult-plant resistance (APR) to powdery mildew were identified on chromosome arms 1DL, 2BS, 2DL, and 6BL in the widely grown Chinese wheat cultivar Bainong 64. These QTL had no effect on response to stripe rust or leaf rust. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating fungal disease. Seedlings of Chinese wheat Bainong 64 are susceptible to Bgt, but adult plants have maintained resistance since it was released in 1996. A population of 171 recombinant inbred lines (RILs) developed from cross Jingshuang 16/Bainong 64 (JS16/BN64) was used to dissect genetic components of powdery mildew resistance. A genetic map comprising 5383 polymorphic markers was constructed using the 15 K SNP chip and kompetitive allele-specific PCR (KASP) markers. Composite interval mapping identified four stable QTL with favorable alleles all from BN64 on chromosome arms 1DL, 2BS, 2DL, and 6BL in at least four environments. They accounted for 8.3%, 13.8%, 14.4%, and 9.0% of the total phenotypic variation explained (PVE) in maximum, respectively. QPmjbr.caas-1DL, situated about 22 Mb from centromere, is probably a new QTL. QPmjbr.caas-2DL located near the end of arm 2DL and explained the largest PVE. Using genetic maps populated with KASP markers, QPmjbr.caas-2BS and QPmjbr.caas-6BL were fine mapped to a 1.8 cM genetic intervals spanning 13.6 Mb (76.0-89.6 Mb) and 1.7 cM and 4.9 Mb (659.9-664.8 Mb), respectively. The four QTL independent of stripe rust and leaf rust resistance were validated for powdery mildew resistance in another RIL population related to BN64 and a cultivar panel using representative KASP markers. Since BN64 has been a leading cultivar and an important breeding parent in China, the QTL and markers reported in this study will be useful for marker-assisted selection of APR.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
15.
Theor Appl Genet ; 136(10): 217, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782334

RESUMO

KEY MESSAGE: Major QTL for grain zinc and iron concentrations were identified on the long arm of chromosomes 2D and 6D. Gene-based KASP markers were developed for putative candidate genes TaIPK1-2D and TaNAS10-6D. Micronutrient malnutrition is one of the most common public health problems in the world. Biofortification, the most attractive and sustainable solution to surmount malnutrition requires the development of micronutrient enriched new crop cultivars. In this study, two recombinant inbred line (RIL) populations, ZM175/XY60 and ZM175/LX987, were used to identify QTL for grain zinc concentration (GZnC), grain iron concentration (GFeC) and thousand grain weight (TGW). Eight QTL for GZnC, six QTL for GFeC and five QTL for TGW were detected. Three QTL on chromosomes 2DL and 4BS and chromosome 6A showed pleiotropic effects on all three traits. The 4BS and 6A QTL also increased plant height and might be Rht-B1a and Rht25a, respectively. The 2DL locus within a suppressed recombination region was identified in both RIL populations and the favorable allele simultaneously increasing GZnC, GFeC and TGW was contributed by XY60 and LX987. A QTL on chromosome 6DL associated only with GZnC was detected in ZM175/XY60 and was validated in JD8/AK58 RILs using kompetitive allele-specific PCR (KASP) marker K_AX-110119937. Both the 2DL and 6DL QTL were new loci for GZnC. Based on gene annotations, sequence variations and expression profiles, the phytic acid biosynthesis gene TaIPK1-2D and nicotianamine synthase gene TaNAS10-6D were predicted as candidate genes. Their gene-based KASP markers were developed and validated in a cultivar panel of 343 wheat accessions. This study investigated the genetic basis of GZnC and GFeC and provided valuable candidate genes and markers for breeding Zn- and Fe-enriched wheat.


Assuntos
Genes de Plantas , Ferro , Triticum , Zinco , Grão Comestível/química , Grão Comestível/genética , Genes de Plantas/genética , Ferro/análise , Desnutrição/dietoterapia , Micronutrientes/análise , Melhoramento Vegetal , Oligoelementos/análise , Triticum/química , Triticum/genética , Zinco/análise , Humanos
16.
Plant Dis ; 107(10): 3230-3237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37018212

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.


Assuntos
Resistência à Doença , Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Erysiphe/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética
17.
Plant J ; 108(3): 829-840, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492155

RESUMO

High-molecular-weight glutenin subunits (HMW-GS) are major components of seed storage proteins (SSPs) and largely determine the processing properties of wheat (Triticum aestivum) flour. HMW-GS are encoded by the GLU-1 loci and regulated at the transcriptional level by interaction between cis-elements and transcription factors (TFs). We recently validated the function of conserved cis-regulatory modules (CCRMs) in GLU-1 promoters, but their interacting TFs remained uncharacterized. Here we identified a CCRM-binding NAM-ATAF-CUC (NAC) protein, TaNAC100, through yeast one-hybrid (Y1H) library screening. Transactivation assays demonstrated that TaNAC100 could bind to the GLU-1 promoters and repress their transcription activity in tobacco (Nicotiana benthamiana). Overexpression of TaNAC100 in wheat significantly reduced the contents of HMW-GS and other SSPs as well as total seed protein. This was confirmed by transcriptome analyses. Conversely, enhanced expression of TaNAC100 increased seed starch contents and expression of key starch synthesis-related genes, such as TaGBSS1 and TaSUS2. Y1H assays also indicated TaNAC100 binding with the promoters of TaGBSS1 and TaSUS2. These results suggest that TaNAC100 functions as a hub controlling seed protein and starch synthesis. Phenotypic analyses showed that TaNAC100 overexpression repressed plant height, increased heading date, and promoted seed size and thousand kernel weight. We also investigated sequence variations in a panel of cultivars, but did not identify significant association of TaNAC100 haplotypes with agronomic traits. The findings not only uncover a useful gene for wheat breeding but also provide an entry point to reveal the mechanism underlying metabolic balance of seed storage products.


Assuntos
Proteínas de Plantas/genética , Sementes/metabolismo , Amido/biossíntese , Triticum/fisiologia , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Haplótipos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Amido/genética
18.
BMC Plant Biol ; 22(1): 288, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698038

RESUMO

BACKGROUND: Wheat (Triticum aestivum L.) is an important cereal crop. Increasing grain yield for wheat is always a priority. Due to the complex genome of hexaploid wheat with 21 chromosomes, it is difficult to identify underlying genes by traditional genetic approach. The combination of genetics and omics analysis has displayed the powerful capability to identify candidate genes for major quantitative trait loci (QTLs), but such studies have rarely been carried out in wheat. In this study, candidate genes related to yield were predicted by a combined use of linkage mapping and weighted gene co-expression network analysis (WGCNA) in a recombinant inbred line population. RESULTS: QTL mapping was performed for plant height (PH), spike length (SL) and seed traits. A total of 68 QTLs were identified for them, among which, 12 QTLs were stably identified across different environments. Using RNA sequencing, we scanned the 99,168 genes expression patterns of the whole spike for the recombinant inbred line population. By the combined use of QTL mapping and WGCNA, 29, 47, 20, 26, 54, 46 and 22 candidate genes were predicted for PH, SL, kernel length (KL), kernel width, thousand kernel weight, seed dormancy, and seed vigor, respectively. Candidate genes for different traits had distinct preferences. The known PH regulation genes Rht-B and Rht-D, and the known seed dormancy regulation genes TaMFT can be selected as candidate gene. Moreover, further experiment revealed that there was a SL regulatory QTL located in an interval of about 7 Mbp on chromosome 7A, named TaSL1, which also involved in the regulation of KL. CONCLUSIONS: A combination of QTL mapping and WGCNA was applied to predicted wheat candidate genes for PH, SL and seed traits. This strategy will facilitate the identification of candidate genes for related QTLs in wheat. In addition, the QTL TaSL1 that had multi-effect regulation of KL and SL was identified, which can be used for wheat improvement. These results provided valuable molecular marker and gene information for fine mapping and cloning of the yield-related trait loci in the future.


Assuntos
Cromossomos de Plantas , Triticum , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Fenótipo , Dormência de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética
19.
New Phytol ; 233(2): 738-750, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655489

RESUMO

Rht-B1b and Rht-D1b, the 'Green Revolution' (GR) genes, greatly improved yield potential of wheat under nitrogen fertilizer application, but reduced coleoptile length, seedling vigor and grain weight. Thus, mining alternative reduced plant height genes without adverse effects is urgently needed. We isolated the causal gene of Rht24 through map-based cloning and characterized its function using transgenic, physiobiochemical and transcriptome assays. We confirmed genetic effects of the dwarfing allele Rht24b with an association analysis and also traced its origin and distribution. Rht24 encodes a gibberellin (GA) 2-oxidase, TaGA2ox-A9. Rht24b conferred higher expression of TaGA2ox-A9 in stems, leading to a reduction of bioactive GA in stems but an elevation in leaves at the jointing stage. Strikingly, Rht24b reduced plant height, but had no yield penalty; it significantly increased nitrogen use efficiency, photosynthetic rate and the expression of related genes. Evolutionary analysis demonstrated that Rht24b first appeared in wild emmer and was detected in more than half of wild emmer and wheat accessions, suggesting that it underwent both natural and artificial selection. These findings uncover an important genetic resource for wheat breeding and also provide clues for dissecting the regulatory mechanisms underlying GA-mediated morphogenesis and yield formation.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
20.
Plant Physiol ; 187(4): 2623-2636, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601616

RESUMO

Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.


Assuntos
Mapeamento Cromossômico , Produtos Agrícolas/fisiologia , Locos de Características Quantitativas , Análise Espectral/métodos , Triticum/fisiologia , Dispositivos Aéreos não Tripulados , Senescência Vegetal , Análise Espectral/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA