Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(14): 146801, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084445

RESUMO

Two-dimensional (2D) ferroelectrics, which are rare in nature, enable high-density nonvolatile memory with low energy consumption. Here, we propose a theory of bilayer stacking ferroelectricity (BSF), in which two stacked layers of the same 2D material, with different rotation and translation, exhibit ferroelectricity. By performing systematic group theory analysis, we find all the possible BSF in all 80 layer groups (LGs) and discover the rules about the creation and annihilation of symmetries in the bilayer. Our general theory can not only explain all the previous findings (including sliding ferroelectricity), but also provide a new perspective. Interestingly, the direction of the electric polarization of the bilayer could be totally different from that of the single layer. In particular, the bilayer could become ferroelectric after properly stacking two centrosymmetric nonpolar monolayers. By means of first-principles simulations, we predict that the ferroelectricity and thus multiferroicity can be introduced to the prototypical 2D ferromagnetic centrosymmetric material CrI_{3} by stacking. Furthermore, we find that the out-of-plane electric polarization in bilayer CrI_{3} is interlocked with the in-plane electric polarization, suggesting that the out-of-plane polarization can be manipulated in a deterministic way through the application of an in-plane electric field. The present BSF theory lays a solid foundation for designing a large number of bilayer ferroelectrics and thus colorful platforms for fundamental studies and applications.

2.
Phys Rev Lett ; 127(24): 247204, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951786

RESUMO

Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX_{2} (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl_{2} single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.

3.
J Chem Phys ; 154(11): 114103, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752342

RESUMO

We have developed a software package, namely, PASP (Property Analysis and Simulation Package for materials), to analyze the structural, electronic, magnetic, and thermodynamic properties of complex condensed matter systems. Our package integrates several functionalities including symmetry analysis, global structure searching methods, effective Hamiltonian methods, and Monte Carlo simulation methods. In conjunction with first-principles calculations, PASP has been successfully applied to diverse physical systems. In this paper, we give a brief introduction to its main features and underlying theoretical formulism. Some typical applications are provided to demonstrate the usefulness, high efficiency, and reliability of PASP. We expect that further developments will make PASP a general-purpose tool for material simulation and property calculation of condensed matters.

4.
Phys Rev Lett ; 122(11): 117601, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951348

RESUMO

Materials with a coexistence of magnetic and ferroelectric order (i.e., multiferroics) provide an efficient route for the control of magnetism by electric fields. Unfortunately, a long-sought room temperature multiferroic with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings is still lacking. Here, we propose that hydrogen intercalation in antiferromagnetic transition-metal oxides is a promising way to realize multiferroics with strong magnetoelectric coupling. Taking brownmillerite SrCoO_{2.5} as an example, we show that hydrogen intercalated SrCoO_{2.5} displays strong ferrimagnetism and large electric polarization in which the hydroxide acts as a new knob to simultaneously control the magnetization and polarization at room temperature. We expect that ion intercalation will become a general way to design magnetoelectric and spintronic functional materials.

5.
Phys Rev Lett ; 120(19): 197602, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799252

RESUMO

The structure of ABO_{3} perovskites is dominated by two types of unstable modes, namely, the oxygen octahedral rotation (AFD) and ferroelectric (FE) mode. It is generally believed that such AFD and FE modes tend to compete and suppress each other. Here we use first-principles methods to show that a dual nature of the FE-AFD coupling, which turns from competitive to cooperative as the AFD mode strengthens, occurs in numerous perovskite oxides. We provide a unified model of such a dual interaction by introducing novel high-order coupling terms and explain the atomistic origin of the resulting new form of ferroelectricity in terms of universal steric mechanisms. We also predict that such a novel form of ferroelectricity leads to atypical behaviors, such as an enhancement of all the three Cartesian components of the electric polarization under hydrostatic pressure and compressive epitaxial strain.

6.
Phys Rev Lett ; 114(14): 147204, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910159

RESUMO

Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of practical interest for the development of novel memory devices that allow for electrical writing and nondestructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO_{3} is the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. However, there is no net magnetic moment in the cycloidal (antiferromagneticlike) magnetic state of bulk BiFeO_{3}, which severely limits its realistic applications in electric field controlled memory devices. Here, we predict that LiNbO_{3}-type Zn_{2}FeOsO_{6} is a new multiferroic with properties superior to BiFeO_{3}. First, there are strong ferroelectricity and strong ferrimagnetism at room temperature in Zn_{2}FeOsO_{6}. Second, the easy plane of the spontaneous magnetization can be switched by an external electric field, evidencing the strong magnetoelectric coupling existing in this system. Our results suggest that ferrimagnetic 3d-5d LiNbO_{3}-type material may therefore be used to achieve voltage control of magnetism in future memory devices.

7.
Phys Rev Lett ; 112(17): 177002, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836268

RESUMO

We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic order in semiconducting K(0.85)Fe(1.54)Se(2) (T(N) = 280 K). We show that the spin-wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic inplane couplings at T = 5 K. At high temperature (T = 300 K) above T(N), short-range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the inplane anisotropic magnetic couplings are a fundamental property of the iron-based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.

8.
Nat Commun ; 15(1): 135, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167841

RESUMO

For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-In2Se3, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.

9.
Phys Rev Lett ; 111(14): 145502, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138253

RESUMO

The use of newly discovered silicene for various optoelectronic applications depends largely on the possibility of controlling its electronic properties by chemical functionalization. To investigate this possibility, we systemically study the structural and electronic properties of chemically functionalized silicene by employing first-principles calculations combined with the cluster expansion approach. Interestingly, we find that chemically functionalized epitaxial silicene is generally accompanied by a spontaneous structural transition, which originates from the preference of sp(3) hybridization of silicon. To realized continuously tunable band gaps, chemical functionalization of freestanding silicene at ~900 K is proposed. Finally, we predict that metastable silicene can also be used as an important host material to produce novel functional materials via substitutional doping. For example, the discovered ordered Si(8)P(4) could be a strong candidate for thin-film solar cell absorbers beyond bulk Si.

10.
Phys Rev Lett ; 110(11): 118702, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166584

RESUMO

Diamond silicon (Si) is the leading material in the current solar cell market. However, diamond Si is an indirect band gap semiconductor with a large energy difference (2.3 eV) between the direct gap and the indirect gap, which makes it an inefficient absorber of light. In this work, we develop a novel inverse band structure design approach based on the particle swarming optimization algorithm to predict the metastable Si phases with better optical properties than diamond Si. Using our new method, we predict a cubic Si(20) phase with quasidirect gaps of 1.55 eV, which is a promising candidate for making thin-film solar cells.

11.
Phys Rev Lett ; 108(18): 187204, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681112

RESUMO

By extending our general spin-current model to noncentrosymmetric spin dimers and performing density functional calculations, we investigate the causes for the helical magnetic order and the origin of the giant ferroelectric polarization of CaMn7O12. The giant ferroelectric polarization is proposed to be caused by the symmetric exchange striction due to the canting of the Mn4+ spin arising from its strong Dzyaloshinskii-Moriya interaction. Our study suggests that CaMn7O12 may exhibit a novel magnetoelectric coupling mechanism in which the magnitude of the polarization is governed by the exchange striction, but the direction of the polarization by the chirality of the helical magnetic order.

12.
Phys Rev Lett ; 109(10): 107203, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005322

RESUMO

By performing density functional calculations, we investigate the origin of the Skyrmion state and ferroelectricity in Cu2OSeO3. We find that the Dzyaloshinskii-Moriya interactions between the two different kinds of Cu ions are extremely strong and induce the helical ground state and the Skyrmion state in the absence and presence of a magnetic field, respectively. On the basis of the general model for the spin-order induced polarization, we propose that the ferroelectric polarization of Cu2OSeO3 in the collinear ferrimagnetic state arises from an unusual mechanism, i.e., the single-spin-site contribution due to the spin-orbit coupling.

13.
Phys Rev Lett ; 107(15): 157202, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107316

RESUMO

The ferroelectric polarization of triangular-lattice antiferromagnets induced by helical spin-spiral order is not explained by any existing model of magnetic-order-driven ferroelectricity. We resolve this problem by developing a general theory for the ferroelectric polarization induced by spin-spiral order and then by evaluating the coefficients needed to specify the general theory on the basis of density functional calculations. Our theory correctly describes the ferroelectricity of triangular-lattice antiferromagnets driven by helical spin-spiral order and incorporates known models of magnetic-order-driven ferroelectricity as special cases.

14.
Nat Commun ; 12(1): 637, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504812

RESUMO

The ferroelectricity in the hybrid perovskite CH3NH3PbI3 is under debate because it results from the polar molecular cation CH3NH3+ while the molecular orientation was reported to be random. Here we predict that a Pb-free hybrid perovskite N(CH3)4SnI3 with non-polar molecular cation N(CH3)4+ has strong ferroelectricity with a spontaneous polarization of 16.13 µC cm-2. The large polarization results from the distortion of SnI6 octahedron induced by the large N(CH3)4+ and is independent of the molecular orientation, so the ferroelectricity is robust. The ferroelectric R3m perovskite structure of N(CH3)4SnI3 can be synthesized as the ground state under a hydrostatic pressure over 3 GPa and remains stable under ambient pressure. Given the strong ferroelectricity, good stability and high visible-light absorption, N(CH3)4SnI3 may be an ideal light-absorber semiconductor for high-efficiency solar cells because its ferroelectric polarization can facilitate electron-hole separation and produce large bulk photovoltaic effect, making the design of homogeneous bulk photovoltaic devices possible.

15.
Phys Rev Lett ; 112(19): 199802, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877973
16.
Artigo em Zh | MEDLINE | ID: mdl-30550166

RESUMO

Objective:To explore the prevalence of allergy in patients with acute rhinosinusitis (ARS) and evaluate the severity of symptoms in ARS children with or without allergy.Method:Two hundred and seven children (4-12 years of age) with ARS and 85 children of control group were included in our research from June, 2016 to January, 2018. We use questionaire to collect the basic information of pediatric patients. The results of skin prick test (SPT) were recorded. Mothers were required to complete the Sinus and Nasal Quality-of-Life Survey (SN-5).All ARS childern were divided into allergic group and non-allergic group according to the result of SPT. We use binomial distribution to evaluate the population rate. t-test, Chi-square test and Wilcoxon rank-sum test were appropriately used to compare the parameters between two groups.Result:Among the 207 ARS participants in this study, 44.4% participants were shown to response to at least one Inhalation allergen and 40.6% participants were shown to response to at least one perennial allergen. Both ratios were significantly higher than those of the control group. Perennial allergy seems to be much more common than seasonal allergy in pediatric patients with ARS. The most troublesome symptoms among the participants with acute rhinosinusitis combined with allergic rhinitis were nasal obstruction (5.28±1.34), nasal discharge (5.07±1.04), post-nasal drip (4.63±1.31) and itchy eyes/nose (4.28±1.51). Four subscale scores of the SN-5 including nasal obstruction, allergy symptoms, emotional distress and activity limitation in the allergic group were obviously higher than those of the non-allergic group.Conclusion:Allergic factors play an important role in the pathogenesis of pediatric acute rhinosinusitis.

17.
Sci Rep ; 5: 13159, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289139

RESUMO

High-temperature insulating ferrimagnetism is investigated in order to further reveal its physical mechanisms, as well as identify potentially important scientific and practical applications relative to spintronics. For example, double perovskites such as Sr2FeOsO6 and Ca2FeOsO6 are shown to have puzzling magnetic properties. The former is a low-temperature antiferromagnet while the latter is a high-temperature insulating ferrimagnet. In order to understand the underlying mechanisms, we have investigated the frustrated magnetism of A2FeOsO6 by employing density functional theory and maximally-localized Wannier functions. We find lattice distortion enhances the antiferromagnetic nearest-neighboring Fe-O-Os interaction, however weakens the antiferromagnetic interactions via the Os-O-O-Os and Fe-O-Os-O-Fe paths, so is therefore responsible for the magnetic transition from the low-temperature antiferromagnetism to the high-temperature ferrimagnetism as the decrease of the A(2+) ion radii. Also discussed is the 5d(3)-3d(5) superexchange. We propose that such superexchange is intrinsically antiferromagnetic instead of ferromagnetic as previously thought. Our work clearly illustrates the magnetic frustration can be effectively relieved by lattice distortion, thus paving the way for tuning of complex magnetism in yet other 3d-5d (4d) double perovskites.

18.
Nanoscale ; 6(8): 4309-15, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24619457

RESUMO

We have developed a new global optimization method for the determination of the interface structure based on the differential evolution algorithm. Here, we applied this method to search for the ground state atomic structures of the grain boundary (GB) between armchair and zigzag oriented graphene. We find two new grain boundary structures with a considerably lower formation energy of about 1 eV nm(-1) than those of the previously widely used structural models. We also systematically investigate the symmetric GBs with the GB angle ranging from 0° to 60°, and find some new GB structures. Surprisingly, for an intermediate GB angle, the formation energy does not depend monotonically on the defect concentration. We also discovered an interesting linear relationship between the GB density and the GB angle. Our new method provides an important novel route for the determination of GB structures and other interface structures, and our comprehensive study on GB structures could provide new structural information and guidelines to this area.

19.
Nanoscale ; 4(20): 6307-11, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22930365

RESUMO

Using the replica-exchange molecular dynamics method (REMD), we have investigated the size dependence of the melting behavior of iron nanoparticles. Comparing to conventional molecular dynamics (MD), the REMD method is found to be very efficient in determining the melting point by avoiding superheating and undercooling phenomena. With accurate determination of the melting point, we find that the melting temperature does not follow linearly with the inverse of size. By incorporating the size dependent thickness of surface liquid layer which is observed in our simulation, we propose a revised liquid skin melting model to describe the size dependent melting temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA